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Following the multiple possibilities to approximate any set function using proper sequences
of countable additive set-functions and our main conclusions given in [1]–[3] concerning the best
approximation, we present the adequate splines for the set-functions.
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Summary. The purpose of this work is to study theoretical numerical properties a multivalued
function [1, ?] which is reversed to Euler’s function, show the relevance of the examples. Also we
want to explore the composition of this function.
Subject of study: explore the composition of the function ϕ (n) with itself and the tasks associated
with it, it’s properties, the number of prototypes of the function ϕ (n), behavior of the straight
OAn, where An (n;ϕ (n)) and O (0; 0) where n→∞.
Results.

Example 1. The set of preimages for 12 is following: φ−1(12) = {13, 21, 26, 28, 36, 42}. Also
we have ϕ−1 (16) = {32, 48, 17, 34, 40, 60}, ϕ−1 (18) = {19, 27, 38, 54}. We remind, that the
number of a form 22n + 1, where n is not-negative integer, is called Fermat number.

The recursive formula for Fermat numbers [12] was also used: Fn = F0...Fn−1 + 2. Useful
for the study of the number of prototypes is Lucas’s Theorem: each prime divisor of the Fermat
number Fn, where n > 1, has a form of k2n+2 + 1.


