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ΓBayes = 〈{1, 2}, {∆1,∆2},L,C,A,B〉 . Finaly any fixed α ∈ ∆1 and β ∈ ∆2 we will determine
the solutions of the following sub games subΓBayes = 〈{1, 2},L(α),C(β),A(α),B(β)〉 of the game
ΓBayes. Using the MPI-OpenMP programming model and ScaLAPACK -BLACS packages we have
elaborated the parallel algorithm to find the all equilibrium profiles (l∗, c∗) in the game ΓBayes.
We can demonstrate the following theorem that estimate the run time performance and commu-
nication complexity of the parallel algorithm.

Theorem 1. The run time complexity of the parallel algorithm is

Tcomput =

7∑
k=2

T kp = O(max(n,m)) +O (max(κ1,κ2)) +

+O (max (|I| , |J |)) +O
(

max
(∣∣∣Î∣∣∣ , ∣∣∣Ĵ ∣∣∣ , |grBr1| · |grBr2|

))
and communication complexity is

Tcomm = O (ts + [max (|I| × |J | ,m× n)] ∗ tb + th) .
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e-mail: irina.cojuhari@ati.utm.md, ion.fiodorov@ati.utm.md,

bartolomeu.izvoreanu@ati.utm.md, dumitru.moraru@ati.utm.md

Above the linear process can act the disturbance signals, so kind of processes can be described by
the parametrical models, where the most used take part from the ARMAX class (Auto-Regressive
Moving Average with eXogenous control). The general model of the class is the ARMAX model
[na, nb, bc, nk], which in fact represents that the output signal is obtained as a result of the su-
perposition between a useful signal obtained by filtering the input signal and a parasitic signal
obtained by filtering the white noise :

y(k) =
B(q−1)

A(q−1)
u(k) +

C(q−1)

A(q−1)
e(k) = yu(k) + ye(k).

where y(k) is the output of the noisy system, u(k) - control signal, e(k) is a sequence of inde-
pendent normal variables with zero mean value and variance one (white noise) and the polynomials
A(q−1), B(q−1), C(q−1) are

A(q−1) = 1 + a1q
−1 + ...+ anaq

−na,

B(q−1) = b1q
−1 + ...+ bnbq

−nb,
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C(q−1) = 1 + c1q
−1 + ...+ cncq

−nc,

where q−1 is backshift operator.

To determine the optimal control, it is used the performance criterion that provides the mini-
mum variance value of the output The purpose of the minimum variance control is to determine
the control signal u(k) in such a way that the loss function

J = E{y2(k)}.

is as small as possible and the control law that ensures the minimization of the given criteria
is called the minimum variance control.

The component ye(k) represents the influence of the environment on the process and it is
characterized by the stochastic disturbance signals and is given by

ye(k) =
C(q−1)

A(q−1)
e(k).

If the output at the k and k − 1 tact are observed, then the output at the m tact is

y(k +m) =
C(q−1)

A(q−1)
e(k +m) = F (q−1)e(k +m) +

q−mG(q−1)

A(q−1)
e(k +m).

To obtain the polynomials F (q−1) and G(q−1) it is necessary to be solved the diophantine
equation:

C(q−1) = A(q−1)F (q−1) + q−mG(q−1).

In this way, the control law is represented by the following equation:

u(k) = − G(q−1)

A(q−1)B(q−1)
.

The output of the system under the control of the minimum variance in the stationary regime
regime is:

y(k) = F (q−1)e(k) = e(k) + f1e(k − 1) + ...+ fde(k − d).

And the variance of the estimator error can be determinate by the

σ2
y = (1 + f2

1 + ...+ f2
d )σ2

e .

It is given the thermic process of temperature variation in a oven. The mathematical model that
approximates the temperature variation in a oven was obtained based on the MATLAB software
and it is

y(k) =
B(q−1)

A(q−1)
u(k) +

C(q−1)

A(q−1)
e(k) =

=
0.0000021q−1 + 0.000002158q−2

1− 1.991q−1 + 0.991q−2
u(k) +

1− 1.229q−1 + 0.2402q−2

1− 1.991q−1 + 0.991q−2
e(k).

The diofantic equation for solving the polimomials F (q−1) and G(q−1) is

(1− 1.229q−1 + 0.2402q−2) = (1− 1.991q−1 + 0.991q−2)(1 + f1q
−1 + f2q

−2)+
+q−3(g0 + g1q

−1).

The control law can be presented in the following way:

u(k) = − (0.77058− 0.7594q−1)

(0.0000021q−1 + 0.000002158q−2)(1 + 0.762q−1 + 0.766q−2)
.

The variance of the estimator error is σy = 2.1674.
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In a cooperative transferable utilities game, the allocation of the win of the grand coalition is
an Egalitarian Allocation if this win is divided into equal parts among all players. The Inverse Set
relative to the Shapley Value of a game is a set of games in which the Shapley Value is the same as
the initial one. In the Inverse Set we determined a family of games for which this Shapley Value
is a coalitional rational value. The Egalitarian Allocation of the game is efficient, so that in the
Inverse Set relative to the Shapley Value, the allocation is the same as the initial one, but may not
be coalitional rational. In this paper, we shall be finding out in the same family of the Inverse Set,
a subfamily of games for which the Egalitarian Allocation is also coalitional rational. We show
some relationship between the two sets of games, where our values are coalitional rational. Finally,
we discuss the possibility that our procedure may be used for solving the same problem for other
efficient values. Numerical examples show the procedure to get solutions for the efficient values.
Key Words. Egalitarian Allocation, Coalitional Rationality, Inverse Problem.
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Kernel represents an abstract generalization of a concept of solution for cooperative games.
These structures have many applications in game theory.[1] We will recall that kernel is a subset

of vertices K of the directed graph
−→
G = (X;U) when K does not contain adjacent vertices and

every vertex in X \K has a successor in K.[2]

Definition 1. [3] Graph F = (XF ;UF ) is called B-stable subgraph of the undirected graph G =
(X;U) if F is stable subgraph of G and for every stable subgraph M of G one of the following
conditions is satisfied:

1. XF ∩XM = ∅;

2. XF ⊆ XM .

Theorem 1. If K is a kernel of the transitively oriented graph
−→
G = (X;

−→
U ) and xi, xj ∈ K then

xi ∈ XFi and xj ∈ XFj , i 6= j, where Fi, Fj are B-stable directed subgraphs of the graph G.


