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Results. Let K be a coreflective subcategory, and R a reflective subcategory of the category of
locally convex topological vector Hausdorff spaces C2V with respective functors k : C2V −→ K and
r : C2V −→ R.

Concerning of the terminology and notation see [1]. Note by µK = {m ∈Mono | k(m) ∈ Iso},
εR = {e ∈ Epi | r(e) ∈ Iso}. Further for an arbitrary object X of the category C2V we examine
the follows construction: let kX : kX −→ X is K-coreplique, and rkX : kX −→ rkX-replique of
the respective objects. On the morphism kX and rkX we construct the cocartesian square

vX · kX = uX · rkX . (1)
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Definition 1. 1. The full subcategory of all isomorphic objects with the type of objects is called
vX cartesian product of the subcategories K and R, noted by v = K ∗dc R.

2.The diagram of cartesian product is called the diagram of cartesian product of the pair of
conjugate subcategories (K,R) (Diagram (RCP)).

Definition 2. The full subcategory of all isomorphic objects with the objects of type vX is
called cartesian product of the subcategories K and R, note by W = K ∗sc R.

Lemma 1. R ⊂ K ∗dc R.
Theorem 1.The application X 7→ vX defined a functor

v : C2V −→ K ∗dc R.

We examine the following condition:
(RCP) For any object X of the category C2V in the diagram (RCP) the morphism uX belongs

to the class µK.
Theorem 2. Let it be a pairs of the subcategories (K,R) verify the condition (RCP). Then v

it is a reflector functor.
Theorem 3. Let K be a coreflective subcategory, but R is a reflective subcategory of the category

C2V, M̃ - the subcategory of the spaces with Mackey topology, S is the subcategory of the spaces
with weak topology. If K ⊂ M̃, but S ⊂ R, then the pair of subcategories (K,R) verify condition
(RCP) the cartesian product is a reflective subcategory.

Examples. 1. For any coreflective subcategory K we have K∗dcΠ = Π, Π-reflective subcategory
of the complete space with weak topology.

2. For any coreflective subcategory K we have K ∗dc S = S, S-reflective subcategory of the
space with weak topology.

Theorem 4. Let (K,L) a pair of conjugate subcategories, and R a reflective subcategory of the
category C2V. Then:

1. K ∗dcR = QεL(R), where QεL(R) is the full subcategory of all εL-factorobjects of objects of
the subcategory R.

2. K ∗dc R is a reflective subcategory of the category C2V.
3. The subcategory K ∗dc R is closed in relation to εL-factorobjects.
4. v · k = r · k.
5. If r(K) ⊂ K, then the coreflector functor k : C2V −→ K and the reflector v : C2V −→ K∗dcR

commute: k · v = v · k.
Theorem 5. Let K (respective R) a coreflective subcategory (respective: reflective)of the cate-

gory C2V, those functors k : C2V −→ K and r : C2V −→ R commute: k · r = r · k. Then

K ∗dc R = K ∗d R.
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