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Design of the Sequential System Automata
using Temporal Equivalence Classes

A. Ursu G. Gruita S. Zaporojan

Abstract

A design method of sequential system automata using tempo-
ral logic specifications is proposed in this paper. The method is
based on well-known Z.Manna and P.Wolper temporal logic sat-
isfiability analysis procedure [1] and is extended to include past
time temporal operators. A new specification method which uses
temporal equivalence classes is proposed to specify the behaviour
of large digital circuits. The impact of the composition and de-
composition operations of the temporal equivalence classes on
the final automata has been studied. A case study is carried out
which deals with the design of the synchronous bus arbiter cir-
cuit element. The SMV tool has been used to verify the temporal
properties of the obtained automata.

Key words: Temporal Logic, Temporal Equivalence Classes,
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1 Introduction

The design and the verification of sequential systems is usually based
on finite state automata. Having the finite automaton of a sequential
system the designer can implement it using one of the known meth-
ods. However the design of the finite automata is usually a difficult
problem. A lot of sequential systems have been designed using ad-hock
developed finite automata. But this state of art can not satisfy any
more the modern circuit design technology. The designer of a large
sequential system requires information about the desired functioning
of the system. This information is delivered in the form of functional
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specifications which describe the observational behaviour of the system
in terms of input/output signals or data. Using this information the
designer must built up the finite state automaton of the system. This
operation however is less formalised and most tedious.

Temporal logic allows to specify observational behaviour of the sys-
tems in terms of input/output signals and histories of signals. To sim-
plify the specification of large circuits the notion of temporal equiv-
alence class is introduced. A temporal equivalence class is a set of
input/output signals or histories of input/output signals that cause
the same sets of next state input/output signals. Specifying tempo-
ral equivalence classes is much simpler with respect to determining all
admissible sequences of sequences of input/output signals. Besides,
temporal equivalence classes can be introduced as temporal logic for-
mulas, simplifying considerable their analysis and the design of the
finite state automaton of the designed system.

The design method proposed in this paper is dedicated to aid the
designer to built up the finite state automata of the designed sequen-
tial systems using the temporal logic specifications of the system. The
method is developed to facilitate the analysis of the temporal logic
specifications which describe the desired input/output behaviour of the
system and to generate the finite state automaton. The method can be
counsidered in fact as a state identification method since it determines
the states of the sequential system. Determining the finite state au-
tomaton is important not only for the design process. The verification
of a sequential system is usually based on the automaton of the sys-
tem. Generating the finite state automaton of the designed system the
designer can analyse the properties of this automaton and determine
whether the initial specifications of the system are correct or not. More-
over the designer usually needs to test an implemented system. To do
this the designer may need the automaton of the system. Verifying the
automaton of the implemented system with the automaton generated
from the temporal logic specifications of the input/output behaviour
of the system it is possible to determine whether the implementation
is correct or not.

The Z.Manna and P.Wolper procedure [1] for satisfiability analy-
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sis of temporal logic specifications is usually utilized to generate the
finite state automata of the designed and/or verified systems. This
procedure can be used in the design of protocols and real time systems
[2]. Such systems can be efficiently specified in terms of future time
temporal logic operators. For the design and verification of sequential
systems the past time operators are more suitable. To specify a se-
quential system the designer uses usually timing charts or sequences
of input/output vectors [3]. A similar tableau-like procedure for past
time temporal logic formulas satisfiability analysis is proposed in the
paper. The proposed procedure allows to generate the finite state au-
tomata of the sequential systems specified in terms of past time interval
temporal formulas. Various equivalent automata can be generated by
the method due to inclusion of a relation between temporal equivalence
classes. Thus, two or more automata can implement the same temporal
specifications of the design system. We call such automata equivalent
and they differ by the amount of states they contain. To prove that
two automata are equivalent the special study is required. In our paper
the equivalence of two automata is considered with respect to the set
of important properties. The SMV tool [4] can be efficiently used to
check whether an automaton satisfies some properties or not.

2  The design method

The proposed method is a state-based method. This means that the
set of possible states of the sequential system is determined by the
designer and the admissible sequences of transition between the states
are specified using temporal logic formulas. The method is dedicated:

e to facilitate the design of the sequential systems finite state au-
tomata;

e to verify the correctness of the implementation of finite state
automata;

e to simplify the sequential system automata reducing the amount
of states when possible.
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As initial data the method uses the input/output relation of the system
and the admissible sequences of the input/output (I/O) vectors. The
design method cousists of the following steps:

1. functional description of the designed sequential systein;

2. design of the temporal logic specifications which describe the in-
put/output behaviour of the system using temporal equivalence
classes;

satisfiability analysis of the temporal logic specifications;

- W

design of the finite state-graph of the specifications;
5. design of the finite automaton of the specifications;

6. verification of the finite automaton using finite state machine
verification tools.

All the steps of the method will be explained properly in the example
below. Here we would like to mention that the satisfiability analysis of
the specifications (step 3) is based on an algorithm like the Z.Manna
and P.Wolper procedure [1] but is extended by authors to include the
analysis of the past time intervals formulas [3].

2.1 The past time formulas satisfiability analysis algo-
rithm

The temporal logic specifications of sequential systems include usually
formulas of the form

[(f1 > O(=ProcessU(fa V f3V ... V fn))),

where the formula f; specifies a state or an event of the system and
the formula (=ProcessU(fa V f3 V ...V fy)) specifies the next time
state or event which must be one described by a formula of the list
(f2, f3y s fn). If the formulas (f1, fo, f3,..., fn) are present or future
time formulas (formulas which do not contain past time temporal op-
erators) the satisfiability analysis can be performed using the Z.Manna
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and P.Wolper procedure [1]. The future time formulas are very popular
when specifying sequential system automata for design purposes. The
difficulties appear when the formulas (f1, fo, f3,..., fn) are past time
formulas. The past time formulas are very popular when specifying
timing charts generated by sequential circuits for testing purposes [3]
or when specifying the admissible sequences of input/output vectors of
such systems. The Z.Manna and P.Wolper procedure does not work
efficiently for these type of formulas which include past time operators.

To perform the satisfiability analysis of the temporal logic specifi-
cations which include past time formulas we introduce a tableau-like
algorithm which allows to analyse the past time intervals formulas of
the form

((f1Sf2S...S5fm) D O(=ProcessU(fm+1V fm+2 V .. V fn)))s

and

[((f18f2f--Bfm) D O(=ProcessU(fmi1V fmi2 V.. V fn))).

The expression (f1.5f2S5...5f,,) denotes the (m — 1)-interval history
of the process specified in the chronological order by the formulas
fms frn—1s fm—2, -5 f2, f1. We call such formulas (m — 1)-interval his-
tory formulas. The expression (f15f20...0fm) denotes the (m — 1) or
less interval of history of the process specified in the chronological or-
der by the formulas fi1; fo, f1; .y fns frm—1, fr—2, -, fo, f1. We call such
formulas back-to (m — 1)-intervals history formulas. The proposed past
time formulas satisfiability algorithm consists of the following steps:

1. The initial set of formulas >y forms the root node of a tree struc-
ture.

2. Perform the Z.Manna and P.Wolper satisfiability analysis of the
initial set of formulas Y. If the formulas are not satisfiable go
to step 5, otherwise generate the next time sets of decomposed
formulas (33,22, 33,...,28). These sets form the descendent
nodes with respect to the node ¥y. The edges which link the
initial node Yy with the nodes X, (i = 1...n) are labelled by
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the propositional variables f;, (I; = 1...n) which satisfy the sets

(i = 1...n) respectively. The nodes containing the sets al-
ready present in the tree are considered terminal nodes. If all
leafs of the tree are terminal nodes go to step 4, otherwise go to
step 3.

3. For an arbitrary nonterminal node of the tree, Z§-, perform the
Z.Manna and P.Wolper satisfiability analysis taking into account
the history of the node. The history of a node is the path from
the tree root to the current node. The path is formed of the
propositional variables fx, (kK = 1...p) on the path edges. If the
formulas corresponding to the current node are not satisfiable go
to step 5. If no nonterminal node has been generated go to step
4, otherwise go to step 3.

4. The satisfiability analysis of specifications has been performed
successfully. The transitive closure of the sets of decomposed
formulas has been generated. Stop

5. The specifications are not correct. Stop.

3 Design of a sequential system: A case study

As a case study the design of a sequential system of a synchronous
bus arbiter circuit is presented in this section. The example has been
used in [4] to verify its correctness using CTL and SMV tool. In our
paper we treat the synthesis problem. Owur goal is to generate the
finite-state automaton of the bus arbiter element provided the temporal
logic specifications of the input/output vectors sequences are given. As
described in [4] the purpose of the bus arbiter is to grant access on each
clock cycle to a single client among a number of k£ clients contending
for the use of a bus (or other resource). The inputs to the circuit
are a set of request signals reqqg...reqr—1 and the outputs are a set
of acknowledge signals acky...ackr 1. Normally, the arbiter asserts
the acknowledge signal of the requesting client with the lowest index.
However, as requests become more frequent, the arbiter is designed to
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fall back on a round robin scheme, so that every requester is eventually
acknowledged. This is done by circulating a token in a ring of arbiter
cells, with one cell per client. The token moves once every clock cycle.
If a given client’s request persists for the time it takes for the token to
make a complete circuit, that client is granted immediate access to the
bus.

The bus arbier counsists of £ arbiter elements. Each arbiter element
services one input request line. Since the arbiter elements are identical
we will consider a single arbiter element. According to the functional
description of the bus arbiter an arbiter circuit element has four inputs
(Request, Token_in, Override_in, Grant_in) and four outputs (Ack, To-
ken_out, Override_out, Grant_out) [4]. The input and output signals of
the arbiter element are presented in Fig. 1.

Fig.1. The intended black box (of the synchronous bus arbiter
element)

The black box in Fig.1. is an intended black box since its inter-
nal structure is shown by dotted lines and it corresponds to the syn-
chronous bus arbiter circuit element as in [4]. We give the internal
structure of the arbiter element to simplify the understanding of the
proposed method.

336



Design of the Sequential System Automata using. ..

3.1 Functional specifications of the designed system

To specify the system the input/output relation of the system signals
must be introduced. The relation between inputs and outputs of the
synchronous bus arbiter circuit element can be introduced using 1/0
vectors. An I/O vector is a tuple of 8 binary values, consisting of 4
input and 4 output elements signals as follows: (Request, Token_in,
Override_in, Grant_in, Ack, Token_out, Override_out, Grant_out). The
relation between inputs and outputs can not be represented as a simple
functional dependence. The outputs depend not only on the input
signals but on the history of the input sequence also. That is why the
temporal aspect must be taken into account. Thus, to generate the
input/output relation the designer has to:

1. determine all possible values of input/output vectors;
2. specify all possible sequences of input/output vectors.

The set of all possible 1/O vectors can be introduced by the designer as
different desired or observed reactions of the system to different inputs.
This vectors are introduced as a truth table (Table 1).
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Table 1

The synchronous bus arbiter element I/O vectors
I/0O vectors
Signals Sl falfs | fel ] fs] fol] fio

Override_out

Request 0|00 0]J0]0]0]O0]1 1
Token_in 0O|l0|0|0|1T]1]1]1]0 0
Owerride_in ojof1{1l0j0|1T]1,01}]O0
Grant_in oOoj{1(0]1lO0}]10O0]11]0O0 1
Ask Oo|o0ol0]OlO]OJO]O]O 1
Token_out o(ojof(oj1r,1}j1r,17]0 0

ojof1{1(0j0|1}1,01}|O0

oj1(0{1l0}1|10}]1 101} O0

Grant_out

Table 1 (continued)

The synchronous bus arbiter element 1/O vectors

1/O vectors
Signals Ju | fio | fis | fu ] fis | fis | fir | fis | fio
Request 1 1 1 1 1 1 1 1 1
Token_in 0 0 1 1 1 1 1 1 1
Override_in 1 1 0 0 1 1 0 0 1
Grant_in 0 1 0 1 0 1 0 1 0
Ask 0 1 0 1 0 1 1 1 1
Token_out 0 0 1 1 1 1 1 1 1
Override_out | 1 1 0 0 1 1 1 1 1
Grant_out 0 0 0 0 0 0 0 0 0

From the Table 1 it follows that the system is sequential due to
the vectors that have the same input and different output parts. For
example, the vectors (fi3, f17), (f14, f18), (f15, f19) have the same input
but different output parts. This situation is possible only when the
system acts on different states. Each pair of mentioned above pairs of
I/0O vectors require two states since any two vectors with the same input
but with different output parts can be implemented only in different
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states. On the other hand, since there are three pairs of such vectors
and supposing that these states are all different the maximal number
of different states can be determined as 2 + 2 4+ 2 = 6. Thus, in this
example the system may have from two up to six states. That is why
the set of all possible values of input/output vectors is not sufficient to
specify the system. Additional information about the system states is
required. This information can not be introduced explicitly since Table
1 does not contain such information. Identification of the automaton
states is the scope in our design. As identification information we
use the admissible sequences of I/O vectors. These sequences must
represent all possible “histories of the system”. Liner time temporal
logic formulas are used to specify the set of all possible sequences of
input/output vectors.

3.2 Temporal Logic Specifications of the system

To specify the set of all possible sequences of I/O vectors the designer
must know them. Sometimes it is impossible to know all sequences
of I/O vectors. Moreover, even in the case it is possible to list all
admissible sequences of 1/O vectors, this information is of less use.
The designer has to transform them into an automaton but it is not
so simple since the number of all admissible sequences can be very
large or infinite. In this paper Liner Time Temporal Logic is used to
specify all admissible sequences of I/O vectors. To do this the temporal
equivalence classes are used.

A temporal equivalence class is a set of I/O vectors or I/O vec-
tor histories that cause the same sets of next state I/O vectors. To
specify temporal equivalence classes is much simpler with respect to
determining all admissible sequences of I/O vectors. Besides, tempo-
ral equivalence classes can be introduced as temporal logic formulas,
simplifying considerable their analysis and the generation of the finite
state automaton of the designed system.

For example, the functional analysis of the arbiter element allows
to determine that the vectors fi, fa, f3, f4 belong to a temporal equiv-
alence class since the sets of next state vectors caused by each of these
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vectors correspond to f1, fo, f3, f1, f5, f6, f7: f8, fos f10, f11, f12, f13, f14,
f15, f16-

Using Linear time Temporal Logic the relation corresponding to
this class of temporal equivalence can be represented as follows,

(f1V faV f3V f1) D O(=ProcessU(f1V faV fsV faV f5V feV
fiVvfaVfaV fioVfuuV fiaV fisV fiaV fis V fis))),

or simply
4 16
IV ) 5 O(=Process UV 1))

A rigorous functional analysis of the designed synchronous bus arbiter
element allows to specify four temporal equivalence classes as specified

by (1), (2), (3) and (4).

4 16
I £V (fiBfy) © O(=ProcessU(\/ f:)); (1)

i=1  §=9..12,j=1..4 i=1

8 15 4
NV £V vasnON £V (iBf) D
=5

=5 =13 i=1  i=9..12,j=1..4
12 19
O(=ProcessU(\/ fi \| fi)); (2)
=1 1=16
19 4
NV fivhasn-ON fi V (1iBf) D
i=17 i=1  i=9..12,j=1..4
12 19
O(=Process U(\/ fi \/ i); (3)
=1 =16

0 Voo (fisf) o

i=9..12,j=5..19

12 19
O=ProcessU(\/ fi \| £:))); (4)
i=1 =16
19
NV A= A (FAf))) (5)
i=1 i<i<j<19
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19
Process = (\/ fi); (6)
i=1
16
—Process U(\/ fi); (7
1=1

The formula (5) specifies the single event condition. It means that a
single I/O vector can be processed at a time. The formula (6) defines
the variable Process. This variable allows to specify the current arbiter
element. A more complex specification of the bus arbiter could use the
Process variable to identify the arbiter element.

In these specifications the following temporal operators have been
used [1]: [|-" Always”, O—"Nexzt”,© =" Prevoiusly” ,U—-"Until”, S—
7 Since”, B—" Back —to”. We would like to underline that the formulas
in the specifications include the ” Since” and ” Back —to” temporal op-
erators S and (. These operators specify the behaviour of the system
in the past. So the expression © f; tells that in the previous state f;
happened. The expression (f;Sf;) specifies that for the current state in
which f; happened there was a state in the past in which f; happened
and no other f; happened between these two states except may be a
continuous sequence of f;. Respectively the expression f;3f; specifies
that for the current state in which f; happened there was a state in the
past in which f; happened and no other f; happened between these
two states except may be a continuous sequence of f;, or no state exists
in the past in which f; happened and then f; happened so far.

3.3 Satisfiability analysis of the specifications

For the satisfiability analysis of the temporal logic specifications a
tableau-like method has been developed which allows to perform the
analysis of the specifications which include future time operators
O,U,]] - as well as past time temporal logic operators (©,S and /.
First, performing the satisfiability analysis the following additional for-
mula has been generated:
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12 19
—Process U(\/ fi \/ fi)- (8)
i=1 1=16

The satisfiability analysis procedure allows to determine the tran-
sitive closure of the temporal logic formula derived from the initial set
of formulas. This transitive closure consists of a set of sets of tempo-
ral logic formulas valid under the assumption that they are valid on
the future or/and on the past. The future and past are presented in
these formulas by temporal logic operators. The results of satisfiability
analysis using the proposed method are presented in Table 2. From
the table it follows that only two sets of formulas ¥y and 31 have been
created during the analysis. This sets represent two different states of
the arbiter element.

Table 2
The satisfiability analysis tableau
Nr | Formula | Propo- Formulas
set sition
L tl 2 [ 3 | 4 | 5 | 6 |
Jis f2, f5: fe, fo: fro,
f3,[1 fr. fs fi1, f12
1 Yo 1+-7=% 1+-6,8=3 1+-7=3%
2 ¥ f5+f8; 1-7=% 1] 1—6,8521
fi3 + fie
L | | 7 | 8 | 9 |
J13s f1a, fie fi7, f1s,
fis f19
1 Yo 1+-6,8=%;, | 1+6,8=3, [
2 ¥, fs+fs, |1+6,8=%1 | 1+6,8=3%; |1+6,8=3,
fi3 + fie
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3.4 Design of the finite state automaton of the specifi-
cations

In sequential system design it is very important to built up the au-
tomata of the designed systems. The satisfiability analysis performed
above (Table 2) allows to built up the state-graph of the specifications.
Below we present the state-graph of the specifications (Fig.2).

Fig.2. The 2-states automaton of the synchronous bus arbiter
element.

In the Fig.2 the transitions between the only two states are marked
by the I/O vectors which cause them. As we see the automaton of the
designed synchronous bus arbiter element consists of 2 states. Hence,
the pairs or 1/O vectors (f13, f17), (f14, f18), (f15, f19) which have the
same input but different output parts are caused by two different states.
Namely, the vectors (f13, f14, f15) are specific for the state 00 while the
vectors (f17, f1s, f19) are specific for the state X X.

From the automaton in Fig.2 it follows that there exists only two
temporal equivalence classes. A node of the automaton corresponds to
a temporal equivalence class because all the vectors entering the node
cause the same set of next time vectors. Indeed the equivalence classes
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specified by (2), (3) and (4) belong to the same equivalence class which
is the union of these classes. So the formulas (2), (3), (4) can replaced
by the formula:

UV 5 VAV AAONV S Y GBIV

=1 1=9..12,j=1.4

(i\/ifi V i A @(S/1 fi N BV

=9..12,j=1.4

(. V(1)) 5 OCProcessU(V fi V)

i=9..12,j=>5..19

which can be simplified to

8 19
DNV £V five N (fiSf)) D nonumber — (9)

=5 =13 1=9..12,7=5..19
12 19
O(=ProcessU(\ fi \/ 1))- (10)
=1 =16

3.5 Decomposing temporal equivalence classes

We have seen that sometimes it is possible to construct major temporal
equivalence classes using minor ones. We call this operation the com-
position of temporal equivalence classes. The reverse operation, the
decomposition, can also be used to get desired design solutions. This
operation is important when the user wants to obtain an automaton
specifying explicitly the states he expects to obtain. Namely, suppose
in our example it is necessary to obtain an automaton with 4 different
states as specified by four temporal equivalence classes (1), (2), (3) and
(4). Unfortunately the satisfiability analysis algorithm allows to gener-
ate a 2-state automaton (Fig.2). This is because the formulas (2), (3)
and (4) represent subclasses of a common temporal equivalence class.
The algorithm generates separate states only for major classes. To gen-
erate separate states for minor classes we have to separate them in such
a way that their union could not produce a major class. The simplest
way to do this is to include the antecedent of a temporal equivalence

344



Design of the Sequential System Automata using. ..

class formula into its consequent part via conjunction. And since the
consequent is a next time formula the included antecedent must be pre-
fixed by a ” Previously” operator to keep the meaning of the temporal
equivalence class formula. This operation is needed for the satisfiabil-
ity analysis algorithm and is equivalent to including the history of the
process into the next time formulas generated by the algorithm. Now
the formulas (1), (2), (3) and (4) can be rewritten as:

i=1  i=9..12,j=1.4 i

UV AV (G85) 5 O-Process U(V £)): (1)

15

0V £ / FVRAOV fi N (i) D

=5 =13 =1 ¢=9..12,j=1.4
8 15 4
O=ProcessUO(V fi V fiVAisANO(V fi V. (fiBf))A
=5 =13 =1 1=9..12,5=1.4
12 19
(V fi / fi))); (2)

=1 1=16
19 4
JCV fiviisn=-O(V fi V  (fiBfi) D
=17 =1 =9..12,5=1.4

O(=Process U(G)(._l\/?7 fiV fie A @(.\4/ fi V (fiBfi)A

i=1" i=9..12,j=1..4

12 19
(V fi Vi) (3)
=1 =16

0 v (fiSfj) >

i=9..12,j=5..19

OCProcessU@(_ V. (FSENAV 1 V ). (@)

i=9..12,j=5..1

The satisfiability analysis of such formulas is mush more difficult to
perform due to a lot of past time operators. Nevertheless carrying out
this analysis for the formulas (1), (2-4’), (5-7) we obtain the 4-state
automaton presented in Fig.3. This automaton is equivalent to the
automaton presented in Fig.2 with the difference that the state X X of
the automaton in Fig.2. was split into three separate states 01, 10 and
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11. One can observe that these three states can be reduced to a single
state X X.

Fig.3. The 4-state automaton of the synchronous bus arbiter element.

3.6 Verifying the equivalence of the automata

The automata presented in Fig.2. and Fig.3. are equivalent. Their
equivalence follows from the equivalence of the temporal logic specifi-
cations given by (1-7) and the specifications given by (1), (2-4"), (5-7).
To prove that both automata are equivalent the SMV tool has been
used. In the appendix the SMV code of the 4-state automaton shown
in Fig.3. is given. To prove that the automata implement correctly
the synchronous bus arbiter element the same properties of the circuit
are proved using the SMV code of the 4-state automaton and the SMV
code of the synchronous bus arbiter element according to K.L.McMillan
example syncarb.smv [4]. A slightly modified version of this example
is given in the appendix.
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4 Conclusions

The method presented in this paper can be used in the design of finite
state automata of sequential systems as well as in the correctness anal-
ysis (verification) of the functioning of sequential systems. The method
is based on the satisfiability analysis algorithm for past time linear tem-
poral logic specifications. The algorithm was proposed to determine
the satisfiability of temporal logic formulas with past time temporal
operators for specific histories. A tableau-like procedure of this algo-
rithm has been designed. To specify the histories of large systems the
notion of the temporal equivalence class has been introduced. Tempo-
ral equivalence classes are very useful when dealing with input/output
vectors of sequential systems. The automata of the synchronous bus
arbiter circuit element have been designed. Two equivalent automata
have been obtained which show the meaning of the composition and de-
composition operations on temporal equivalent classes. The SMV tools
has been used to verify the automata and to show that the automata
implement correctly the synchronous bus arbiter circuit element.
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5 Appendix

-- The arbiter element automaton.
-- SMV code of the automaton is written by Ursu Anatol,
—-- Chisinau, August 1997.

MODULE main

VAR
state: {s00, s01, s10, si1};
I0_vector:
{f1,f2,£f3,f4,f5,f6,f7,£f8,f9,f10,f11,f12,f13,f14,f15,
£16,£17,£18,£19};

ASSIGN
init(state) :=s00;
init(I0_vector):={f1,f2,f3,f4,f5,f6,f7,£8,f9,f10,f11,
f12,f13,f14,f15,f16};
next(state) :=
case
(state=s00) & (I0_vector in
{f1,f2,£f3,f4,f9,f10,f11,f12}): s00;
(I0_vector in
{f5,f6,f7,f8,f13,f14,f15,f16}): s01;

(state=s00) &

(state=s01)
(state=s01)
(state=s01)
(state=s01)

(state=s11)
(state=s11)
(state=s11)
(state=s11)

ISR S S

L5

(I0_vector
(I0_vector
(I0_vector
(I0_vector

(I0_vector
(I0_vector
(I0_vector
(I0_vector

in
in
in
in

in
in
in
in
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{£5,£6,£7,£8}): s01;
{£9,£10,f11,£12}): s10;
{f1,£2,£3,£4}): s00;
{£f16,£17,£18,£19}): s11;

{£5,f6,f7,£8}): s01;
{£f9,£f10,f11,£f12}): s10;
{f1,£f2,£3,f4}): s00;
{f16,f17,f18,f19}): si1;
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(state=s10) & (I0_vector in {f5,f6,f7,f8}): s01;
(state=s10) & (IO_vector in {f9,f10,f11,f12}): s10;
(state=s10) & (IO_vector in {f1,f2,£f3,f4}): s00;
(state=s10) & (I0_vector in {f16,f17,f18,f19}): si1;

1: state;
esac;

next (I0_vector) :=
case
(state=s00) & (IO_vector in
{f1,£2,£3,f4,£f9,f10,f11,f12}):
{f1,f2,f3,f4,f5,f6,f7,£f8,f13,f14,f15,f16};
(state=s00) & (IO_vector in
{f5,£6,£7,£8,f13,f14,f15,f16}):
{f1,f2,£f3,f4,f5,f6,f7,£8,f9,f10,f11,f12,f16,f17,f18,f19};

(state=s01) & (IO_vector in {f5,f6,f7,f8}):
{f1,f2,f3,f4,f5,f6,f7,£f8,f9,f10,f11,f12,f16,f17,f18,f19};
(state=s01) & (IO_vector in {f9,f10,f11,f12}):
{f1,f2,f3,f4,f5,f6,f7,£f8,f9,f10,f11,f12,f16,f17,f18,f19};
(state=s01) & (IO_vector in {f1,f2,£f3,f4}):
{f1,f2,£3,f4,f5,£6,f7,£8,f9,£10,f11,f12,f13,f14,£15,f16};
(state=s01) & (IO_vector in {f16,f17,f18,f19}):
{f1,f2,£f3,f4,f5,f6,f7,£8,f9,f10,f11,f12,f16,f17,f18,f19};

(state=s11) & (IO_vector in {f5,f6,f7,f8}):
{f1,f2,f3,f4,f5,f6,f7,£f8,f9,f10,f11,f12,f16,f17,f18,f19};
(state=s11) & (IO_vector in {f9,f10,f11,f12}):
{f1,f2,f3,f4,f5,f6,f7,£f8,f9,f10,f11,f12,f16,f17,f18,f19};
(state=s11) & (IO_vector in {f1,f2,£f3,f4}):
{f1,f2,f3,f4,f5,f6,f7,£f8,f9,f10,f11,f12,f13,f14,f15,f16};
(state=s11) & (IO_vector in {f16,f17,f18,f19}):
{f1,f2,£f3,f4,f5,f6,f7,£8,f9,f10,f11,f12,f16,£f17,f18,f19};
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(state=s10) & (IO_vector in {f5,f6,f7,f8}):
{f1,f2,f3,f4,f5,f6,f7,£f8,f9,f10,f11,f12,f16,f17,f18,f19};
(state=s10) & (IO_vector in {f9,f10,f11,f12}):
{f1,f2,f3,f4,f5,f6,f7,£f8,f9,f10,f11,f12,f16,f17,f18,f19};
(state=s10) & (IO_vector in {f1,f2,£f3,f4}):
{f1,f2,£3,f4,f5,£6,f7,£8,f9,£10,f11,f12,f13,f14,£15,f16};
(state=s10) & (IO_vector in {f16,f17,f18,f19}):
{f1,f2,f3,f4,f5,f6,f7,£f8,f9,f10,f11,f12,f16,f17,f18,f19};

1: I0O_vector;
esac;
DEFINE

Request:=(I0_vector in {f9,f10,f11,f12,f13,f14,f15,f16,
£17,£18,f19});

Ack:= (IO_vector in {f10,f12,f14,f16,f17,f18,f19});

Token_in:=(I0_vector in {f5,f6,f7,f8,f13,f14,f15,f16,
£17,£18,£19});

Override_in:=(I0_vector in {f3,f4,f7,f8,f11,f12,f15,
£16,f19});

Grant_in:=(I0_vector in {f2,f4,f6,f8,f10,f12,f14,f16,
£18});

Token_out:=(I0_vector in {f5,f6,f7,f8,f13,f14,f15,f16,
£17,£18,£19});

Override_out:=(I0_vector in {£f3,f4,f7,£f8,f11,f12,f15,
£16,f17,£18,f19});

Grant_out:=(I0_vector in {f2,f4,f6,f8});

SPEC
-—  AG ((Ack -> Request) & AF (!Request | Ack))
AG (Override_in -> Override_out) &
IAG (Override_out —> Override_in) &
AG (Grant_in & Request -> Ack) &
AG (Ack -> Request) &
AG (Token_in = Token_out) &
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AG (Request -> EF Ack) &

IAG (Request -> Ack) &

'AG 'EF (Request -> Ack) &

AG (Grant_out -> Grant_in) &

AG (Grant_out = (Grant_in & !'Request))

—-- The arbiter element circuit.
—-- The SMV code implemented according to McMillan example.
-- syncarb.smv:

MODULE main

VAR
Persistent : boolean;
Token : boolean;
Request : boolean;
Override_in: boolean;
Grant_in: boolean;
Token_in : boolean;

ASSIGN
init(Request) :={0,1};
next (Request) :={0,1};
init(Override_in) :={0,1};
next (Override_in) :={0,1};
init(Grant_in) :={0,1};
next (Grant_in) :={0,1};
init(Token_in) := {0,1};
next(Token_in) := {0,1};
init(Token) := {0,1};

next (Token) := Token_in;

init(Persistent) := 0;

next (Persistent) := Request & (Persistent | Token);
DEFINE

Override_out := Override_in | (Persistent & Token);
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Grant_out := !Request & Grant_in;
Ack := Request & (Persistent & Token | Grant_in);
Token_out:= Token_in;

SPEC
-—  AG ((Ack -> Request) & AF (!Request | Ack))
AG (Override_in -> Override_out) &
'AG (Override_out —> Override_in) &
AG (Grant_in & Request -> Ack) &
AG (Ack -> Request) &
AG (Token_in = Token_out) &
AG (Request -> EF Ack) &
IAG (Request -> Ack) &
'AG 'EF (Request -> Ack) &
AG (Grant_out -> Grant_in) &
AG (Grant_out = (Grant_in & !'Request))
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