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Abstract - The practice of synthesis the controllers dem-
onstrates, that for the determination of the dynamic tuning
parameters of the controller is more convenient to operate
with the analytical expressions with a low volume of calcula-
tions that dependent on the known parameters of control
object. The analytical synthesis expressions, on the one hand
have the advantage of decreasing the volume of calculation
of tuning parameters (compared with the synthesis methods
and algorithms that include a humber of steps) and, by the
other hand, using of the analytical expressions is a good
alternative in case of the controllers with auto-tuning and
adaptive control, where the controller retuning is done in
function of the parameters variation of the control object
during operation of the control system.

Based on this consideration, in this paper it is proposed
the analytical algorithms of synthesis the modal controllers,
in form of algebraic expressions, for control objects with
arbitrary order inertia and astatism by the maximum stabil-
ity degree criterion. This criterion offers to the designed
control systems an aperiodic step response, high perform-
ance and better robustness. The elaborated algorithms rep-
resent simple analytical procedures with reduced volume of
calculation and without any imposing conditions to the
complexity of the control object. They allow also to impose
or to optimize the settling time of the designed automatic
control system.

Keywords: control  system, state  space  representation,
synthesis of the modal controllers, analytical algorithms,
maximum stability degree.

I. INTRODUCTION

State space representation has become the mathemati-
cal support in the systems theory and a source for a new
series of approaches and modern methods for analysis
and synthesis of control systems. This fact is due to the
following issues: representation in the state space using
the matrix calculations that are easy to implement on the
computer; permits unitary treatment of the mono-variable
and multi-variable systems, continuous and discrete sys-
tems, linear and nonlinear systems; it is used for synthesis
of the controllers to the high order objects etc. The state
variables x(¢) =[x,(¢),x,(),...,x,(¢)] are those variables

that determine the future behavior of the system, when
the initial state of the system and the inputs are known.
For state space realization of the system it is need to be
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satisfied the condition of controllability and observability
[1,2,6].

The modal control method solves the problem of syn-
thesis the controller based on the changes of the modes to
achieve the optimal control of the object. The modes are
eigenvalues of the state matrix and represent the roots of
the characteristic equation of the closed loop system. The
obvious relation of location the eigenvalues in the com-
plex plane of roots with the dynamics of the system
makes an important the task of moving the roots to the
desired area [5, 9, 10, 12].

Synthesis of the modal controller is started with de-
termination of the characteristic polynomial ¢ ,(p) of the

control system state matrix 4, imposing the poles (eigen-
values) [7;,72,..-.7,] » that determine the desired dynam-

ics of the design system, according to which is obtained
the characteristic polynomial ¢.(p) of the system matrix

in the closed loop. For determination of the feedback vec-
tor’ components k (tuning parameters) is used the
Ackermann relation [2, 7, 10]

k=[00..11U1p(A) = (1,0)
=[00..1][B,4B, ..., A"'B] p(A) ’
where @(A)=A"+q, A"V +..+qA+qyl; U - the
controllability matrix.

In case of presentation of the system in canonical con-
trollability form, calculation of the feedback vector’
components is reduced to use the following expressions

[6, 10]

k. =

=4 (1,b)

where ¢; and o; represent the coefficients of character-

-a;, i=0,..,(n-1),

istic polynomials ¢, (p) and ¢,(p) respectively.

Thus, using the feedback by the states is possible to
modify all poles of the control system and, therefore,
imposing the dynamic behavior according to the desired
performance by choosing the eigenvalues of the system
matrix in the closed loop. The choosing of new eigenval-
ues is a complex problem and using of classical methods
of synthesis, for example, the dominant poles method, the
responses prototype method, the analytical design of con-
trollers etc., for the control systems with high order is met
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difficulties that appear in case of correlation the poles of
the system with the desired performance and energetic
indices required the graphic design and specialized soft-
ware, but the obtained optimal parameters by these meth-
ods sometimes can not satisfy the condition of stability
[9, 11, 12].

In paper [3] it is proposed a new synthesis method of
the modal controller by the maximum stability degree
criterion (MSD), criterion that offers to the design sys-
tems the higher performance and better robustness.

The problem of synthesis the control system in the
state space by the maximum stability degree is formu-
lated in the following way [3]. It is considered a structure
of mono-variable control system with representation in
the state space (Fig.1) that includes the control object
with known parameters

X =Ax+bu,
{ y=cTx, 2
and control algorithm
u(t)y=—kTx(t)= —[ko k, k,_, ]~[x1 Xy e X, ]T , 3

where A is the state matrix with dimension (nxn); x -
the vector of the state variables, (nx1); u — the control
value; b - the vector of control values, (nx1); ¢ - the
vector of output values, (nx1); k - the vector of tuning
parameters, (nx1); n - the order of the system; y - the

output value.

u + x X y
b 1p cr —»
+ ]
A
KT

Fig. 1. The block scheme of a dynamic system in the state space.

It is necessary to determine the components of the
feedback vector (tuning parameters), so as to be satisfied
the condition

J= n}fnx n(k,),i=(1,..,n), 4

where J is the maximum stability degree; 77 - the stabil-
ity degree of the system; k; - the components of the tun-
ing parameters vector; n - the degree of the characteris-
tic polynomial of the control system [4].

In conformity with method in [3], it is introduced the
notion of the maximum stability degree J and using the
substitution p, =-J =+ jw,, the desired characteristic
polynomial ¢.(p) of the design system is obtained by
the decomposition of the characteristic polynomial ¢ ,(p)

of the 4 matrix in n linear factors

1 z

(P =[ (v o+ N+ jor + D[ T+ D= 5
k=1 j=1

=P H P P+ s
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where / is the number of conjugate pairs of complex
roots; z - the number of real roots; n=2/+z - the de-
gree of the characteristic polynomial of the design control
system; ¢q; = f;(J, @), i=(0,...,n—=1).

The value of the maximum stability degree J of the
designed control system is obtained from the following
expression [3]

(6)

where «,,_; is a coefficient of the characteristic polyno-

mial ¢,(p).
The values of the tuning parameters k; are determined
in conformity with expressions (1, b).

II. ANALYTICAL ALGORITHMS FOR SYNTHESIS
OF THE MODAL CONTROLLERS

If it is imposed the problem to design of the control
system in the state space by the error, the solution of this
problem depends on the structure of control system,
where the control object can be with inertia and astatism.

The transfer function of control object with inertia is
given in the following form:

k
HF (S) - n n—1 ’ (7)
ays" +ais"+...+a, s+a,
where k is the transfer coefficient; a, q,...,a, - the

coefficients of the transfer function of control object, n -
the order of control object. For the control object with
inertia and astatism we have the coefficient @, =0.

The standard controllable form of representation in the
state space of the object (7), normalized by the a, is

X 0 1 0 0 Tx17To
A 0 0 0 0 | x| |0
A S R )
=| : : : sl
X 0 0 0 1 x| |0
xn Q) - Q. 0y Xn 1
y= [ﬂo 00 O]X = ﬂoxl .
k
where « :a—”; a = Lt ey Oy :ﬁ; Bo=—-
a a 4o )

For the model object with inertia and astatism in ex-
pression (8) we have o, =0.

For the control object with inertia and astatism the
structural block scheme of the control system in the state
space is represented in the Figure 2 [2, 6]. To amplify the
error signal, in direct connection is included the propor-
tional block k. The control algorithm is determined by

the following expression

Ky ] [x2 X3

If the reference of the control system with object with
inertia is the step signal, then to obtain the stationary
error null it is necessary to add in the controller structure

u(t) = _[kl k2 - Xy ]T + kO‘g : (9)
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ko

Fig. 2. The structural block scheme of the control system for the object with inertia and astatism.

an integrator element, which increase the order of the
designed system (Fig. 3) [2, 6]. The control algorithm, in
this case, is determined by the following expression

k- xs . (10)

The characteristic polynomial of the state matrix of the
control system is presented:
o for the object with inertia and astatism (Fig. 2)

u(ty=-lk, k, x, | +koe .

Pu(p)=p"+a, p" +. +ap; (11, @)
o for the object with inertia (Fig. 3)
¢, (p)=p"+a, p"+..+ayp*+a,p. (11,0)

The step response of control system will be aperiodic,
if the imaginary parts of the characteristic polynomial
roots are null. Therefore, in accordance with the method
in [3], it is introduced the notion of the maximum stabil-
ity degree J and the roots of the characteristic polyno-
mial p,=-J. In this case the desired characteristic
polynomial ¢_(p), obtained by decomposing the poly-

nomial (11) in the linear factors gets the next form:
o for the model object with inertia and astatism

0.(p)=(p+ )" =c,p" +c, 1 Jp" +
+c, o Jip 2+ o p e
=q,P" + 4, P P A 1P+

(12, a)
where ¢q; = f;(¢;,J), i =(0,...,n) and value of the maxi-

mum stability degree J of the design system is determined
by the following expression

o

J =1 (13, )
o for the model object with inertia
r+ - [y g +
—» )—rg I e N I )
5 _ P _

o.(p)=(p+J)m =c,, pm +c,Jp" +

+c,JJipr + i+ S p eyt = (12, b)
=4y P +q,p" + 4, p" .+ g1 P+ q,
Where qi = ﬂ(C[,J), l: (0,,(”"1‘1)) 5 q[ = fi(ci"])a

i=(0,...,n) and the value of the maximum stability de-
gree is

_ Ay

. (13, b)
n+l

From the characteristic polynomials ¢ ,(p) (11, a),
@.(p) (12, a) and relations (13, a), (1, b) for the object
with inertia and astatism is obtained

n—1

n

s ko=q0/ Bys ki =g, — ¢, i=1,....(n=1) (14,a)

or from ?,(p) (11, b), @.(p) (12, b) and relations (13,b),

(1, b) for the model object with inertia is obtained
J= Oy
n+l’

ko =q0/ﬂ0; ki =qi —(Zi_l, i=(1,...,l’l) . (14, b)

Using the relations (14) can be calculated the maxi-
mum stability degree J and the tuning parameters k; of

the modal controller.
In the expressions (12, a, b), the relations

(p+I)r=c,p"+c, | JJp"t+c, ,J2p2+.. (15, a)
+cJ p+cyJn ’

(p+ ) =c, prt+c,Jp" +c,J2prt+..

+Clan+cOJn+l (15,[))

represent the Newton binomial and their coefficients are
calculated by the following expressions [8]

y =:§Dx1

Fig. 3. The structural block scheme of the control system for the object with inertia.
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co=l¢=ci= ”(”—11)--é(n'—z+1) _
cL.l

ﬁ(n—l+1) (16)
/=1

n!
= ,i=(1,...,n
i! il(n—1i)! ( )

where for the (15, a) have ¢; =c] and for the (15, b) -

N |
¢ =Cupr-

Using the expressions (14), expression for calculation
of the binomial coefficients (16) and taking into account
the order of the closed loop system (for the control object
with inertia and astatism is n, but for the control object
with inertia is (n+1)), after some transformations were
elaborated the analytical algorithms of synthesis the mo-
dal controllers, in form of algebraic expressions, for the
control object with arbitrary order inertia # and with or
without astatism for the control system with maximum
stability degree and aperiodic step response. The elabo-
rated algorithms are presented in the Tables I and I1.

TABLE L.

THE ANALYTICAL ALGORITHMS FOR SYNTHESIS OF THE MODAL

CONTROLLERS TO THE OBJECTS WITH INERTIA AND ASTATISM

No. The calculation expressions
Transfer function of the control object
1 k
Hp(s)= 3 ) 3
ApS" + ;5" +ayst 4 a, 52 +a, s
Normalized transfer function
B
2 HF (S) = ) 0 D) B ]
St o, ST o, ST oyt oS
a,_ a a
@y =, ==, = By = —.
dg ag g dg
Mathematical model in the vector-matrix form
X fo 1 - 0 o x| [o
o0 0 0 [ x| ]o
3 N R - : : N E R A
X, o o - 0 1 X, 0
X, 0 - = —a,, —a,| x 1
y=[8 0 0 .. 0
4 Controllability condition
rangU =rang[b Ab A%b A3b... A" 'b]=n
s Control low
u= —[kl,k2,k3,...,k,,_l]-[xz,x3,x4,...,xn]T +k0€ .
Determination of the maximum stability degree
and the coefficients of tuning parameters vector
_% _ 9
6 n na,
H(n —I+1)
Jn -1 _ ;
ky = , k= - Jri—q,, i=1,..,(n-1)

TABLE II.
THE ANALYTICAL ALGORITHMS FOR SYNTHESIS OF THE MODAL
CONTROLLERS TO THE OBJECTS WITH INERTIA

No. The calculation expressions

Transfer function of the control object

1
Hp(s)= K

aps" + as" '+ as” P+ L+ a, s+ a,

Normalized transfer function

_ Po
2 HF (Y) T n—1 n=2 ’
s"+a, s +a, s +..tos+q
a a a a
_%n. _Yn-1. _". _". —
Oy =30 =— 5.0y =0, | = _5ﬁ0 -
ay a a, a ag

Mathematical model in the vector-matrix form

X 0 1 0 o | x| o
R0 0 = 0 0 w0
3 _ Yol=l : - : : o
X 0 (U 0 1 Xt 0
X, @y —ap v T %y TOp | x, 1
y=[8 0 0 .. 0.
Mathematical model
in the vector-matrix form of the control system
% 0 1 .. 0 0|[x1To] [o
4 X, |=| O 0o .. 1 Of-[x, |+|0Ofu+]|0|r,
X, -a, —-a .. —a,; 0 X, 1 0
s =B 0 .. 0 0 o] |1
A b
y@®=[g, 0 0 ... 0]x,
5 Controllability condition

rangU = rang[l;,zzlb:;lzl;,...,;inlg] =n+l,

Control low
6 u(t) =~ky,kys ok 1-[x1, X050 %, 17 + ke,

where ¢=(r-y).
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Determination of the maximum stability degree
and the coefficients of tuning parameters vector

— [ _ 9
n+l (n+1a, ’
Jn+l
7 ky = ,
Bo

H(n—l+2)
= S

i!

Analyzing the elaborated analytical algorithms in this
paper and presented in the Tables I and II it was observed
that the dynamic tuning parameters of controllers &;
depend on the known object’s parameters and the
maximum stability degree J of the system. If, however,
J is considered as a free parameter, then in accordance
with the expression [2, 10]

_In(l/¢,)

s r; amn
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may be imposed or optimized the settling time of the
designed control system. In relation (17) the &, is the

stationary system error.

III. APPLICATIONS AND COMPUTER SIMULATION

Suppose that the controlled technological process is
described by the model object with fourth order inertia
with known parameters

6 —_—
(0,55 +D)(s +1)(2s + D)(4s +1) (18)
6

Hp(s) =

T 454 41553 +17.552 + 755 +17

where k=6, ay =4,a, =15,a, =17,5,a; =7,5,a, =1.

It is formulated the problem to synthesis of the modal
controller to the model object (18) and to determine the
vector of tuning parameters .

It is obtained the normalized transfer function by the a

By
Hp(s)= 4 3 2 -
st +assdFa,st+as+a
1,5

T $4 43,7553 1437552 +18755 40,25

where ¢, = 44 _ 0,25, = 4 1875 a, = & _ 4,375;
ay ao ao

a k
oy =—L=375,=—=15.
Qo o
It is determined the vector-matrix equation in the stan-
dard controllable realization

X 0 1 0 0 x| [o

x2 _ O 0 1 O X2 0

i || 0 0 0 1 |x [fof*
-025 -1875 -4375 -375] . | |1

i
yoy =[5 0 0 0k

The stationary error of the control system will be null
if in the structure of controller is connected an integrator
element (Fig. 3), which raises the order of the designed
system and the above equation is transformed in the fol-
lowing form [2, 6]

X 0 1 0 0 0]|™
X, 0 0 1 0  0f|x
5l=l 0 0 0 1 0ffx |+
i, | |0.25 —1875 —4375 =375 0|,
il L-15 0 0 0 0f|,

i

y:[l,SbO 0 0 O

It is obtained the characteristic polynomial of the 4
matrix

@(p)=p3>+3,75p* +4375p3 +1875p2 +0,25p =
=pi+azpt+aypd+ap?+ayp

It is verified the condition of controllability of the
system

AAAAAAAAA

rangU = rang[b, Ab, A2b, A3b, A*b] =5.

Because the rank of matrix U is equal with order of the
system, then the system is controllable.

In conformity with (10) the control algorithm is pre-
sented in the following form

u(t) =k, ky, ky, ky]-[x1,%0,%3,%, 7 + ke .

Synthesis of controller by the maximum stability de-
gree criterion is done based on the elaborated analytical
algorithms, presented in the Table II.

5
@@ P sy g
5  Say

0
ky =10J3 -, ky =102 —a,, ky = 5] —at5.

The results of synthesis are given in the Table III.

Using the method of dominant poles for the system
with imposed indices of performance o < 5%, ¢, <10s, it
is determined the dominates poles [1, 2, 6]:

0 0<5% = y~=1;

3
0 1 <10s=>10r—=n=yw, =03
where @, is a proper frequency;

0 in final is choice y,, = py,, =—0,3, which allows
to impose the other poles »,, . =-1.

The characteristic polynomial of the designed control
system is determined by the expression

0.(p)=(p+03)2(p+1)3 =
= pS+3,6p* +4,89p3 +3,07p2 +0,87p+0,09 =

=p3+q4p* + 4303 +q2p? +q1p +qp-

Using the relation (14, b) is determined the vector of
tuning parameters &, in conformity with the dominant
poles method, which values are presented in the Table III.

To calculate the tuning parameters by the parametric
optimization method was used the Matlab Simulink soft-
ware (the simulation structural block scheme of the con-
trol system in the state space is presented in the Fig. 4)
and the obtained results are presented in the Table II1.

TABLE III.
THE RESULTS OF SYNTHESIS THE CONTROLLER
Synthesis

No. methods ko ku k ks s
Maximum J=0,75

! stability 1 y5¢ | 133 | 2344 | 125 0
degree

o | Thedomi- 50 | 062 | 1,195 | 0515 | -0,15
nation poles

3 | Parametrical |\ oo, 1 53¢ | 0257 | 0962 | -0.915
optimization
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t b Scapet

State-Spare
Tt 12, 3, 1]

Fig. 4. The simulation structural block scheme
of the control system in the state space.

Step responses of the designed control system are pre-
sented in the Fig. 5 and the performance are given in the
Table IV. The numbering of curves correspond to the
numbering of the methods in the Table III.

12 ]
y(t) 3
L
DAE 2 N
1
DB oo e
DAk ........................
Q2b e i P .......................
| : Ls
D 1 | | 1 |
0 5 10 15 20 25 a0
Fig.5. Step responses of the designed control system.
TABLEIV.
THE PERFORMANCE OF THE DESIGNED CONTROL SYSTEM
No. | Synthesis method The performance of control system
t., s t, s o, % A v
Maximum
! stability degree 8,95 12,2 ) ) )
5 The domination 15 19.2 ) ) )
poles
3 Parametrical 56 | 126 | 55 | 1|1
optimization

Next it is formulated the problem of optimization the
settling time of the designed control system. This
problem can be solved, because the analytical
exprressions for calculation of the components of the
feedback vector k;, elaborated in this paper (view Tables
II and III) represent the dependencies by the maximum
stability degree J of the designed system and also it is
inversely proportional to the settling time # (17).

In the result, using the analytical algorithms presented
in the Table II were calculated the tuning parameters k;

of the modal controller, that is tuning to the model object
(18), for the diverse values of the stability degree J of
designed system (Table V).

TABLE V.
CONTROLLERS’ SYNTHESIS FOR OPTIMISATION OF
No. J k() k] kz k3 k4 l‘S, S
1 J=0,75 | 0,158 1,33 2,344 | 1,25 0 12,2
2 J=1 0,667 4,75 8,125 | 5,625 1,25 9,15
3 J=1,5 | 5,063 | 25,063 | 31,88 | 18,13 | 3,75 6,1
4 J=2 21,33 | 79,75 | 78,13 | 35,63 | 6,25 4,58
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The results of the synthesis are presented in the Fig. 6.
The numbering of the curves corresponds to the
numbering from the Table V.

N s

08
0.8
0.7

0E
05
0.4
0.3
0.2
01

O S S U R U U

Fig. 6. Step responses of the automatic control system
for various values of the settling time 7 .

From Figure 6 it is observed that with increasing the
stability degree of the designed control system is
decreasing the settling time (view Table V).

IV. CONCLUSIONS

1. In this paper were proposed and theoretic argued the
new analytical algorithms, in form of algebraic expres-
sions for synthesis of the modal controllers by the maxi-
mum stability degree criterion, that offers to the designed
control system higher speed (the lowest settling time),
reduced overshoot and better robustness at the variation
parameters of the control object.

2. The elaborated algorithms not impose any restric-
tions to the complexity of the control object and can be
applied for different types of objects: with arbitrary order
of inertia; inertia and astatism; inertia and time delay;
inertia, astatism and time delay. At the same time, the
elaborated analytical algorithms permit to impose or to
optimize the settling time of the designed control system.

3. Application of the elaborated analytical algorithms
eliminates the biggest part of steps provided by the algo-
rithm of the maximum stability degree method. This fact
essential simplifies the procedure of synthesis the control-
ler and the volume of work and duration of the processing
respectively are reduced approximately with 80-90%. As
a result, it frees the resources of computer system, mak-
ing the control system more responsive to the negative
influence of disturbances, which provides the necessary
conditions for synthesis and implementation of the con-
trollers with auto-tuning and adaptive control systems.

4. Analyzing the performance of the designed control
system by the proposed analytical algorithms for synthe-
sis of the modal controller, in comparison with parametri-
cal optimization and dominant poles methods, it was no-
ticed that elaborated algorithms offer to the designed con-
trol systems the aperiodic step response, higher perform-
ance and better robustness. At the same time, from the
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presented example it can be observed that by the varying
the stability degree of the control system it can be im-
posed and optimized the settling time of the control sys-
tem.
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