
Analytical Algorithms  
for Synthesis of Modal Controllers  

by the Maximum Stability Degree Criterion  
 

Ion Fiodorov, Bartolomeu Izvoreanu, Irina Cojuhari, Dumitru Moraru 
 Technical University of Moldova, Bd. Stefan cel Mare, 168, MD-2004 

Automatics and Informational Technologies Department, 
Chisinau, Republic of Moldova 

fiodorov_ion@yahoo.com, izvor@mail.utm.md; cojuhari_irina@mail.utm.md, kod447@gmail.com 
 
 

Abstract - The practice of synthesis the controllers dem-
onstrates, that for the determination of the dynamic tuning 
parameters of the controller is more convenient to operate 
with the analytical expressions with a low volume of calcula-
tions that dependent on the known parameters of control 
object. The analytical synthesis expressions, on the one hand 
have the advantage of decreasing the volume of calculation 
of tuning parameters (compared with the synthesis  methods 
and algorithms that include a number of steps) and, by the 
other hand, using of the analytical expressions is a good 
alternative in case of the controllers with auto-tuning and 
adaptive control, where the controller retuning is done in 
function of the parameters variation of the control object 
during operation of the control system.  

Based on this consideration, in this paper it is proposed 
the analytical algorithms of synthesis the modal controllers, 
in form of algebraic expressions, for control objects with 
arbitrary order inertia and astatism by the maximum stabil-
ity degree criterion. This criterion offers to the designed 
control systems an aperiodic step response, high perform-
ance and better robustness. The elaborated algorithms rep-
resent simple analytical procedures with reduced volume of 
calculation and without any imposing conditions to the 
complexity of the control object. They allow also to impose 
or to optimize the settling time of the designed automatic 
control system. 

   
Keywords: control system, state space representation, 
synthesis of the modal controllers, analytical algorithms,  
maximum stability degree. 

I. INTRODUCTION 
State space representation has become the mathemati-

cal support in the systems theory and a source for a new 
series of approaches and modern methods for analysis 
and synthesis of control systems. This fact is due to the 
following issues: representation in the state space using 
the matrix calculations that are easy to implement on the 
computer; permits unitary treatment of the mono-variable 
and multi-variable systems, continuous and discrete sys-
tems, linear and nonlinear systems; it is used for synthesis 
of the controllers to the high order objects etc. The state 
variables  are those variables 
that determine the future behavior of the system, when 
the initial state of the system and the inputs are known. 
For state space realization of the system it is need to be 

satisfied the condition of controllability and observability 
[1, 2, 6]. 
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The modal control method solves the problem of syn-
thesis the controller based on the changes of the modes to 
achieve the optimal control of the object. The modes are 
eigenvalues of the state matrix and represent the roots of 
the characteristic equation of the closed loop system. The 
obvious relation of location the eigenvalues in the com-
plex plane of roots with the dynamics of the system 
makes an important the task of moving the roots to the 
desired area [5, 9, 10, 12]. 

Synthesis of  the modal controller is started with de-
termination of the characteristic polynomial )( pAϕ of the 
control system state matrix  A, imposing the poles (eigen-
values) ]...,,,[ 21 nγ γγ , that determine the desired dynam-
ics of the design system, according to which is obtained 
the characteristic polynomial )( pcϕ  of the system matrix 
in the closed loop. For determination of the feedback vec-
tor’ components k (tuning parameters) is used the 
Ackermann relation [2, 7, 10] 

)(]...,,,][1...00[
)(]1...00[

11
1

ABAABB
AUk

n ϕ
ϕ

−−
−

=
==

          (1,a) 

where IqAqAqAA n
n

n
01

1
1 ...)( ++++= −
−ϕ ;  - the 

controllability matrix. 
U

In case of presentation of the system in canonical con-
trollability form, calculation of the feedback vector’ 
components is reduced to use the following expressions  
[6, 10] 

)1(...,,0, −=−= niqk iii α ,              (1,b) 

where  and iq iα  represent the coefficients of character-
istic polynomials )( pcϕ  and )( pAϕ  respectively. 

Thus, using the feedback by the states is possible to 
modify all poles of the control system and, therefore, 
imposing the dynamic behavior according to the desired 
performance by choosing the eigenvalues of the system 
matrix in the closed loop. The choosing of new eigenval-
ues is a complex problem and using of  classical methods 
of synthesis, for example, the dominant poles method, the  
responses prototype method, the analytical design of con-
trollers etc., for the control systems with high order is met 
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difficulties that appear in case of correlation the poles of 
the system with the desired performance and energetic 
indices required the graphic design and specialized soft-
ware, but the obtained optimal parameters by these meth-
ods sometimes can not satisfy the condition of stability 
[9, 11, 12].  

In paper [3] it is proposed a new synthesis method of 
the modal controller by the maximum stability degree 
criterion (MSD), criterion that offers to the design sys-
tems the higher performance and better robustness. 

The problem of synthesis the control system in the 
state space by the maximum stability degree is formu-
lated in the following way [3]. It is considered a structure 
of mono-variable control system with representation in 
the state space (Fig.1) that includes the control object 
with known parameters 
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and control algorithm 
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where A  is the state matrix with dimension )( nn× ; x  - 
the vector of the state variables, ; u – the control 
value;  - the vector of control values, ;  - the 
vector of output values, ;  - the vector of tuning 
parameters, ;  -  the order of the system;  - the 
output value. 

)1( ×n
b )1( ×n c

)1( ×n k
)1( ×n n y

 
Fig. 1. The block scheme of a dynamic system in the state space. 

It is necessary to determine the components of the 
feedback vector (tuning parameters), so as to be satisfied 
the condition 

)...,,1(),(max nikJ i
ki

== η ,           (4) 

where  is the maximum stability degree; J η -  the stabil-
ity degree of the system;  - the components of the tun-
ing parameters vector; n  -  the degree of the characteris-
tic polynomial of the control system [4]. 

ik

In conformity with method in [3], it is introduced the 
notion of the maximum stability degree J and using the 
substitution ki jJp ω±−= , the desired characteristic 
polynomial )( pcϕ  of the design system is obtained by 
the decomposition of the characteristic polynomial )( pAϕ  
of the A  matrix in  linear factors n
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where  is the number of conjugate pairs of complex 
roots; 

l
z  - the number of real roots;  - the de-

gree of the characteristic polynomial of the design control 
system; 

zln += 2

)1,...,0(),,( −== niJfq kii ω . 
The value of the maximum stability degree of the 

designed control system is obtained from the following 
expression [3]  

J

n
J n 1−=

α ,                                    (6) 

where 1−nα  is a coefficient of the  characteristic polyno-
mial )( pAϕ . 

The values of the tuning parameters  are determined ik
in conformity with expressions (1, b). 

II. ANALYTICAL ALGORITHMS FOR SYNTHESIS  
OF THE MODAL CONTROLLERS  

If it is imposed the problem to design of the control 
system in the state space by the error, the solution of this 
problem depends on the structure of control system, 
where the control object can be with inertia and astatism. 

The transfer function of control object with inertia is 
given in the following form: 
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where  is the transfer coefficient;  - the 
coefficients of the transfer function of control object, n  - 
the order of control object. For the control object with 
inertia and astatism we have the coefficient 

k naaa ...,,, 10

0=na . 
The standard controllable form of representation in the 

state space of the object (7), normalized by the , is 0a

[ ] .0...00

,

1
0

0
0

1000

0000
0010

100

1

2

1

1210

1

2

1

xxy

u

x
x

x
x

x
x

x
x

n

n

nnn

n

ββ
αααα

==

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−−

−

MM

L

L

MMOMM

L

L

&

&

M

&

&

 (8) 

where 
0

0
0

1
1

0

1
1

0
0 ;...;;;

a
k

a
a

a
a

a
a

n
nn ==== −
− βααα .  

For the model object with inertia and astatism in ex-
pression (8) we have 00 =α .  

For the control object with inertia and astatism the 
structural block scheme of  the control system in the state 
space is represented in the Figure 2 [2, 6]. To amplify the 
error signal, in direct connection is included the propor-
tional block . The control algorithm is determined by 
the following expression  

0k

[ ] [ ] ε032121 ...)( kxxxkkktu T
nn +⋅−= −L .  (9) 

If the reference of the control system with object with 
inertia is the step signal, then to obtain the stationary  
error null it is necessary to add in the controller structure 
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Fig. 2. The structural block scheme of the control system for the object with inertia and astatism. 

an integrator element, which increase the order of the 
designed system (Fig. 3) [2, 6]. The control algorithm, in 
this case, is determined by the following expression  

[ ] [ ] ε02121 ...)( kxxxkkktu T
nn +⋅−= L .      (10) 

The characteristic polynomial of the state matrix of the 
control system is presented: 
• for the object with inertia and astatism (Fig. 2) 
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• for the object with inertia (Fig. 3) 
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The step response of control system will be aperiodic, 
if the imaginary parts of the characteristic polynomial 
roots are null. Therefore, in accordance with the method 
in [3], it is introduced the notion of the maximum stabil-
ity degree  and the roots of the characteristic polyno-
mial . In this case the desired characteristic  
polynomial 

J
Jpi −=

)( pcϕ , obtained by decomposing the poly-
nomial (11) in the linear factors gets the next form: 
• for the model object with inertia and astatism  
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where  and value of the maxi-
mum stability degree J of the design system is determined 
by the following expression  
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n
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• for the model object with inertia  
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where ))1(,...,0(),,( +== niJcfq iii ;  ),,( Jcfq iii =
),...,0( ni =  and the value of the maximum stability de-

gree is  

1
1

+
= −

n
J nα .              (13, b)  

From the characteristic polynomials )( pAϕ  (11, a), 
)( pcϕ  (12, a) and relations (13, a), (1, b) for the object 

with inertia and astatism is obtained  

 
n

J n 1−=
α , )1(...,,1,;/ 000 −=−== niqkqk iii αβ   (14, a) 

or from )(ˆ pAϕ  (11, b), )( pcϕ  (12, b) and relations (13,b), 
 (1, b) for the model object with inertia is obtained 
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Using the relations (14) can be calculated the maxi-
mum stability degree  and the tuning parameters  of 
the modal controller. 

J ik

In the expressions (12, a, b), the relations 
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represent the Newton binomial and their coefficients are 
calculated by the following expressions [8] 

 
 

Fig. 3. The structural block scheme of the control system for the object with inertia. 
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where for the (15, a) have i
ni cc =  and for the (15, b) - 

. i
ni cc 1+=

Using the expressions (14), expression for calculation 
of the binomial coefficients (16) and taking into account 
the order of the closed loop system (for the control object 
with inertia and astatism is n, but for the control object 
with inertia is (n+1)), after some transformations were 
elaborated the analytical algorithms of synthesis the mo-
dal controllers, in form of algebraic expressions, for the 
control object with arbitrary order inertia n and with or 
without astatism for the control system with maximum 
stability degree and aperiodic step response. The elabo-
rated algorithms are presented in the Tables I and II.  

TABLE I. 
 THE ANALYTICAL ALGORITHMS FOR SYNTHESIS OF THE MODAL 
CONTROLLERS TO THE OBJECTS WITH INERTIA AND ASTATISM  

No. The calculation expressions 
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Mathematical model in the vector-matrix form 
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TABLE II. 
 THE ANALYTICAL ALGORITHMS FOR SYNTHESIS OF THE MODAL 

CONTROLLERS TO THE OBJECTS WITH INERTIA  

No. The calculation expressions 
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Mathematical model in the vector-matrix form 
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Mathematical model  
in the vector-matrix form of the control system 
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Analyzing the elaborated analytical algorithms in this 

paper and presented in the Tables I and II it was observed 
that the dynamic tuning parameters of controllers  
depend on the known object’s parameters and the 
maximum stability degree  of the system. If, however, 

 is considered as a free parameter, then in accordance 
with the expression  [2, 10] 
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may be imposed or optimized the settling time of the 
designed control system. In relation (17) the stε  is the 

stationary system error. 

III. APPLICATIONS AND COMPUTER SIMULATION 
Suppose that the controlled technological process is 

described by the model object with fourth order inertia 
with known parameters 
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It is determined the vector-matrix equation in the stan-
dard controllable realization   
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The stationary error of the control system will be null 
if in the structure of controller is connected an integrator 
element (Fig. 3), which raises the order of the designed 
system and the above equation is transformed in the fol-
lowing form [2, 6] 
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It is obtained the characteristic polynomial of the Â  
matrix  
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It is verified the condition of controllability of the  
system  

5]ˆˆ,ˆˆ,ˆˆ,ˆˆ,ˆ[ 432 == bAbAbAbAbrangrangU . 

Because the rank of matrix U is equal with order of the 
system, then the system is controllable. 

In conformity with (10) the control algorithm is pre-
sented in the following form  

ε043214321 ],,,[],,,[)( kxxxxkkkktu T +⋅−= . 

Synthesis of controller by the maximum stability de-
gree criterion is done based on the elaborated analytical 
algorithms, presented in the Table II. 

.5,10,10

,5,,
55

342
2

31
3

2

0
4

1
0

5
0

0

13

ααα

α
β

α

−=−=−=

−====

JkJkJk

JkJk
a
aJ  

    The results of synthesis are given in the Table III. 
Using the method of dominant poles for the system 

with imposed indices of performance str 10%,5 <<σ , it 
is determined the dominates poles [1, 2, 6]: 

o 1%5 ≈⇒< ψσ ; 

o 3,031010 ==⇒≈⇒< n
n

r st ψωη
ψω

,  

where nω  is a proper frequency; 
o in final is choice 3,02,1 −== dompγ , which allows 

to impose the other poles 15,4,3 −=γ . 
The characteristic polynomial of the designed control 

system is determined by the expression  

.
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Using the relation (14, b) is determined the vector of 
tuning parameters , in conformity with the dominant 
poles method, which values are presented in the Table III.  

k

To calculate the tuning parameters by the parametric 
optimization method was used the Matlab Simulink soft-
ware (the simulation structural block scheme of the con-
trol system in the state space is presented in the Fig. 4) 
and the obtained results are presented in the Table III. 

TABLE III. 
THE RESULTS OF SYNTHESIS THE CONTROLLER 

No. Synthesis 
methods k0 k1 k2 k3 k4 

J=0,75 
1 

Maximum 
stability  
degree 0,158 1,33 2,344 1,25 0 

2 The domi-
nation poles 0,06 0,62 1,195 0,515 -0,15 

3 Parametrical 
optimization 0,091 0,538 0,257 -0,962 -0,915 
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Fig. 4. The simulation structural block scheme  
of the control system in the state space.   

Step responses of the designed control system are pre-
sented in the Fig. 5 and the performance are given in the 
Table IV. The numbering of curves correspond to the 
numbering of the methods in the Table III. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5. Step responses of the designed control system. 

TABLE IV. 
THE PERFORMANCE OF THE DESIGNED CONTROL SYSTEM 

The performance of control system  No. Synthesis method tc, s tr, s σ, % λ ψ 

1 Maximum  
stability degree 8,95 12,2 - - - 

2 The domination 
poles 15 19,2 - - - 

3 Parametrical  
optimization 5,6 12,6 5,5 1 1 

 
Next it is formulated the problem of optimization the 

settling time of the designed control system.  This 
problem can be solved, because the analytical 
exprressions for calculation of the  components of the 
feedback vector , elaborated in this paper (view Tables 
II and III) represent the dependencies by the maximum 
stability degree J of the designed system and also it is   
inversely proportional to the settling time ts (17). 

ik

In the result, using the analytical algorithms presented 
in the Table II were calculated the tuning parameters  
of the modal controller, that is tuning to the model object 
(18), for the diverse values of the stability degree of 
designed system (Table V). 

ik

J

TABLE V. 
CONTROLLERS’ SYNTHESIS FOR OPTIMISATION OF  ts 

No. J k0 k1 k2 k3 k4 ts, s 
1 J=0,75 0,158 1,33 2,344 1,25 0 12,2 
2 J=1 0,667 4,75 8,125 5,625 1,25 9,15 
3 J=1,5 5,063 25,063 31,88 18,13 3,75 6,1 
4 J=2 21,33 79,75 78,13 35,63 6,25 4,58 

The results of the synthesis are presented in the Fig. 6. 
The numbering of the curves corresponds to the 
numbering from the Table V. 

 

 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 6. Step responses of the automatic control system  
for various values of the settling time t . s

From Figure 6 it is observed that with increasing the 
stability degree of the designed control system is 
decreasing the settling time (view Table V). 

IV. CONCLUSIONS 
   1. In this paper were proposed and theoretic argued the 
new analytical algorithms, in form of algebraic expres-
sions for synthesis of the modal  controllers by the maxi-
mum stability degree criterion, that offers to the designed 
control system higher speed (the lowest settling time), 
reduced overshoot and better robustness at the variation 
parameters of the control object.   

2. The elaborated algorithms not impose any restric-
tions to the complexity of the control object and can be 
applied for different types of objects: with arbitrary order 
of inertia; inertia and astatism; inertia and time delay; 
inertia, astatism and time delay. At the same time, the 
elaborated analytical algorithms permit to impose or to 
optimize the settling time of the designed control system.  

3. Application of the elaborated analytical algorithms 
eliminates the biggest part of steps provided by the algo-
rithm of the maximum stability degree method. This fact 
essential simplifies the procedure of synthesis the control-
ler and the volume of work and duration of the processing 
respectively are reduced approximately with 80-90%. As 
a result, it frees the resources of computer system, mak-
ing the control system more responsive to the negative 
influence of disturbances, which provides the necessary 
conditions for synthesis and implementation of the con-
trollers with auto-tuning and adaptive control systems.  

4. Analyzing the performance of the designed control 
system by the proposed analytical algorithms for synthe-
sis of the modal controller, in comparison with parametri-
cal optimization and dominant poles methods, it was no-
ticed that elaborated algorithms offer to the designed con-
trol systems the aperiodic step response, higher perform-
ance and better robustness. At the same time, from the 
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presented example it can be observed that by the varying 
the stability degree of the control system it can be im-
posed and optimized the settling time of the control sys-
tem.   
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