Vinca minor AND Chelidonium majus AS REDUCING ANGENTS FOR Ag-MnO₂ NANOPARTICLE SYNTHESIS

Alexandra CIORÎȚĂ^{1,2}, ORCID ID: 0000-0003-2991-3957 Maria SUCIU^{1,2}, ORCID ID: 0000-0001-5449-9108 Sergiu MACAVEI ^{2,3}, ORCID ID: 0000-0001-6367-2398 Irina KACSO², ORCID ID: 0000-0003-1039-0543 Ildiko LUNG², ORCID ID: 0000-0003-4677-4602 Maria-Loredana SORAN^{2,*}, ORCID ID: 0000-0003-3770-9702 Marcel PÂRVU¹, ORCID ID: 0000-0002-5892-9280

¹Babeş-Bolyai University, Faculty of Biology and Geology, 44 Republicii, Cluj-Napoca, Romania
² National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
³ Technical University, Faculty of Mechanical Engineering, Department of Mechatronics and Machine Dynamics,
400641 Cluj-Napoca, Romania

*Corresponding author: Loredana Soran, loredana.soran@itim-cj.ro

Introduction. Medicinal plants play an important role in the so called "green chemistry" wave, where metal nanoparticles with high therapeutic properties are obtained.

Material and methods. Three types of Ag-MnO₂ nanoparticles (NPs) were obtained using *Vinca minor* and *Chelidonium majus* plant extracts. The NPs were characterized through scanning and transmission electron microscopy (S/TEM), Fourier-Transformed Infrared Spectroscopy (FTIR), and X-ray diffraction (XRD). Their medicinal potential was assessed against *Escherichia coli* and *Staphylococcus aureus* bacteria, *Candida albicans* fungi, normal keratinocytes (HaCaT), and skin melanoma (A375) cells, through biochemical and electron microscopy techniques.

Results. The NPs had polygonal shapes and were uniformly distributed, with crystalline structures and different sizes (from 9.3 nm to 32.4 nm). The NPs synthesized in the presence of V. *minor* extract inhibited the development of both microbes and cancer cells taken into account. The antimicrobial effect tested through agar well diffusion method showed an inhibitory capacity of the V. *minor* synthesized NPs of almost 16 mm. The viability of A375 cells was reduced to 38.8% while a moderate cytotoxic effect was observed on HaCaT (46.4%) cells at concentrations above 500 μ g/mL. At the same concentrations, NPs synthesized with C. *majus* had a rather proliferative effect, whereas the NPs synthesized with extract mix (1:1, v/v) negatively affected both cell lines.

Conclusions. The *C. majus* and *V. minor* extracts can form small and uniformly distributed Ag-MnO₂ NPs with high potential for selective treatments and can be used for various biomedical applications.

Keywords: cytotoxicity, green chemistry, electron microscopy, microbiology, plant extracts

Acknowledgments (optional). We would like to give special thanks to our colleagues, Cristian Sevcencu for proofreading our manuscript, to Augustin Moţ for the HPLC-DAD analysis of the plant extract, and to Maria Miclăuş for providing us the PDF card no. 00-041-1104. S/TEM images were obtained at LIME-CETATEA of INCDTIM Cluj-Napoca (infrastructure project 623/11.03.2014), and we would also like to thank Lucian Barbu-Tudoran for offering a second opinion on the obtained images.

References.

1. Ciorîță et al., (2020). Green synthesis of Ag-MnO₂ nanoparticles using *Chelidonium majus* and *Vinca minor* extracts and their in vitro cytotoxicity. Molecules, 25(4), 819. https://doi.org/10.3390/molecules25040819.