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LIFETIME DISTRIBUTIONS AND THEIR
APPROXIMATION IN RELIABILITY OF

SERIAL/PARALLEL NETWORKS

Alexei LEAHU, Veronica ANDRIEVSCHI-BAGRIN

Abstract:In this paper we present limit theorems for lifetime distribu-
tions connected with network’s reliability as distributions of random vari-
ables(r.v.) min(Y1,Y2,...,YM ) and max(Y1,Y2,...,YM ), where Y1,Y2,..., are inde-
pendent, identically distributed random variables (i.i.d.r.v.), M being Power
Series Distributed (PSD) r.v. independent of them and, at the same time,
Yk , k = 1, 2, ..., being a sum of non-negative, i.i.d.r.v. in a Pascal distributed
random number.

1. Introduction

First of all, let us observe that many mathematical models connected with
Network’s Reliability deal with series and parallel Networks as subsystems
of Network with more complex structure/topology. At the same time, the
lifetime of each element of the Network, as r.v., may be represented as a
sum of fixed or of random number of nonnegative r.v.[4]. Finally, reliability
characteristics of such Networks depend of the same characteristics of such
kind of Network subsystems or elements. This explains the appearance in the
last decades of new probability distributions of the lifetime as a function of
the minimum/maximum or sum of nonnegative r.v. An entire class of such
distributions can be described as Min / Max Power Series Distributions [6]
and PSD Convolutions [8]. If we refer to the above mentioned results, in the
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context of mathematical modeling of Network’s lifetime,then the Min/Max
distributions target the case when the units/elements of the Network are non-
replaceable in the event of their fall. The purpose of our work is to extend these
results to the case when each unit of the network can be instantly replaced by
a similar standby unit. Because we refer to the above named distributions, let
us remember the main notions and results which will be used. Before that, we
mention the following: the introduction and use of the 0−truncation procedure
of discrete-type distributions describing the random number of r.v. which are
listed in the Min / Max or random sum of v.a., all contextually linked to the
notion of lifetime, are motivated by the fact that real Networks consist of at
least one unit or element

2. Power series distributions and related results

Introduction of the ”power series distribution” class is due to Noack [10],
highlighting a subset of discrete probabilistic distributions [3] such as bino-
mial, Poisson, logarithmic, geometric, negative binomial, Pascal distributions
and many others.

Definition 1. We say that Z is a Power Series Distributed r.v. with
parameter θ and power series function A(θ) =

∑
z>0

azθ
z , shortly Z ∈ PSD,

if

P(Z = z) =
azθ

z

A(θ)
, az > 0, z = 0, 1, 2, ...; θ ∈ (0, τ),

where the power series
∑
z>1

azθ
z is convergent with radius of convergence τ ∈

(0,+∞) ∪ {+∞}.
Since the PSD discrete probability distributions used in our paper will be

the 0-truncated ones, we must be sure that this operation does not alter the
quality of the distribution to be of PSD class.

Proposition 1. If the r.v. Z ∈ PSD with parameter θ ∈ (0, τ), τ ∈
(0,+∞) ∪ {+∞} and power series function A(θ) =

∑
z>0

azθ
z, then its 0-

truncation is a r.v. Z∗ ∈ PSD with parameter θ ∈ (0, τ), τ ∈ (0,+∞)∪{+∞}
and power series function A∗(θ) =

∑
z>1

azθ
k = A(θ)− a0, i.e.,

P(Z∗ = z) =
azθ

z

A∗(θ)
=

azθ
z

A(θ)− a0
, az > 0, z = 1, 2, ... .

Proof. Let us consider the r.v. Z ∈ PSD with parameter θ ∈ (0, τ),
τ ∈ (0,+∞) ∪ {+∞} and power series function A(θ) =

∑
k>0

akθ
k. Then its
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0-truncation will be the discrete r.v. Z∗ with distribution

P(Z∗ = z) = P(Z = z�Z > 1) =
azθ

z

A(θ)
/(1− a0

A(θ)
) =

azθ
z

A(θ)− a0
,

where θ ∈ (0, τ), τ ∈ (0,+∞) ∪ {+∞}.az > 0, z = 1,2,..., excluding the
degenerate case A(θ)− a0 = 0 when 0-truncation does not make sense. �

Remark. If the r.v. Z ∈ PSD and the null coefficient a0 of its power
series function A(θ) =

∑
z>0

azθ
z is equal to 0, then the 0-truncation of the r.v.

Z does not change the initial distribution.
Example 1. The following Table 1 shows the form of PSD parameters of

0-truncated distributions of some classical discrete distributions as Bin(n; p),
Geom(p), Poisson(λ), Log(p), NegBin(k; p), Pascal(k; p), marked by symbol
” ∗ ” , if their 0-truncation changes form as a PSD.

Here, according to the [3],the Pascal(k; p) distribution expresses the prob-
ability of having to wait exactly z Bernoulli trials until k ”successes” have
occurred if the probability of a success in a single trial is p (probability of
”failure” q = 1 − p). At the same time, the Negative Binomial distribution
(NegBin(k; p)) expresses the probability of the number z of all ”failures”
occurring while waiting for k ”successes” in Bernoulli trials.

Distribution az θ A(θ) τ

Bin∗(n; p),
n ∈ {1, 2, ..},
0 < p < 1

{ (
n
z

)
, for z = 1, n,

0, for z = 0 or z > n.
p

1−p (1 + θ)n−1 +∞

Poisson∗(λ),
λ > 0

{
1
z!
, for z = 1, 2, ..,
0, for z = 0.

λ eθ−1 +∞

Log(p),
0 < p < 1

{
1
z
, for z = 1, 2, ..,
0, for z = 0.

p − ln (1− θ) 1

Geom∗(p),
0 < p < 1

{
1, for z = 1, 2, ..,
0, for z = 0.

1− p θ
1−θ 1

NegBin∗(k; p),
k ∈ {1, 2, ..},
0 < p < 1

{ (
z+k−1
z

)
, for z = 1, 2, ..,

0, for z = 0.
p (1− θ)−k−1 1

Pascal(k; p),
k ∈ {1, 2, ..},
0 < p < 1

{ (
z−1
k−1

)
, for z = k, k + 1, ..,

0, for z = 0, k − 1.
1− p

(
θ

1−θ

)k
1

Table 1.
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Next results refers to the distributions of PSD mixtures of minimum or
maximum of nonnegative i.i.d.r.v.

Proposition 2 [6]. If X1, X2,...,Xn,... are nonnegative i.i.d.r.v. with
cumulative distribution functions (c.d.f.) F (x) = P(Xi ≤ x), i ≥ 1 and
the r.v. N ∈ PSD with parameter θ ∈ (0, τ), τ ∈ (0,+∞) ∪ {+∞} whose
power series function A(θ) =

∑
k>0

akθ
k, N being independent of r.v. X1,

X2,...,Xn,..., then the c.d.f. of r.v. UN = min(X1, X2,...,XN ) and VN =
max(X1, X2,...,XN ) are given, respectively, by formulas

UN (x) = P(UN ≤ x) = 1− A(θ(1− F (x))

A(θ)
I[0,+∞)(x),

VN (x) = P(VN ≤ x) =
A(θF (x))

A(θ)
I[0,+∞)(x),

where I[0,+∞)(x) =

{
0, if x < 0,
1, if x ≥ 0.

Lifetime distributions generated by formulas from Proposition 2 will be
called lifetime distributions of Min-PSD type and, respectively of Max-PSD
type. Distributions that fit into these types of lifetime distributions have been
proposed and studied, for example, in the papers of Adamidis [1], Kus [5],
and many others authors. The idea that has led us to describe these two
classes of distribution is very close to the approach made in the paper [7]. The
only difference is that we focused on 0−truncated distributions.

Another type of lifetime distribution gives us the distribution of a random
sum of non-negative, i.i.d.r.v. This kind of lifetime distribution appears when
the unit or element of the Network consists, for example, of k ≥ 1 pairs of
identical interchangeable units. Initially the first pair of units operates, one of
the units being in standby mode, so that the defective unit, which immediately
goes through the repair and standby mode, can be replaced instantaneously
with the waiting unit with the probability 1 − p, p ∈ (0, 1), i.e., with the
probability p this unit cannot be replaced by the standby unit and this pair of
units fails. Suppose that if a particular pair of units fails, then it is replaced by
the next waiting pair. So the whole element fails when the last pair fails. Each
pair of unities has the same lifetime c.d.f., so we deduce that life time of pair
no. j is a r.v. YNj

∼ X1 +X2+...+XNj
, where X1, X2,... are i.i.d.r.v. which

corresponds to the lifetime of each unit and Nj are i.i.d.r.v., Nj ∼ Geom∗(p),
Nj being independent of r.v. X1, X2,..., j = 1, k. This means that the lifetime
of the described element is a r.v. YN ∼ YN1 +YN2 + ...+YNk ∼ X1 + ...+XN ,
where N ∼ Pascal(k, p), k ∈ {1, 2, ...}, p ∈ (0, 1).
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Unfortunately, the exact distribution of the lifetime as a distribution of the
sum of non-negative, independent, identically distributed random variables
taken in a PSD random number can, generally, be determined in terms of the
Probability Generating Function (in discrete case) or in the terms of Laplace
transformation (in absolutely continuous case).

Proposition 3 [9]. If X1, X2,...,Xn,... are nonnegative i.i.d.r.v. and
r.v. N ∈ PSD with parameter θ ∈ (0, τ), τ ∈ (0,+∞) ∪ {+∞} and the
power series function A(θ) =

∑
k>0

akθ
k, N being independent of the r.v. X1,

X2,...,Xn,..., then:
a) the lifetime YN = X1 + ... + XN is a discrete r.v. with probability

distribution given by its Probability Generating Function

ψYN
(w) =

A(θψ(w))

A(θ)
,

as soon as the probability distributions of the r.v. Xi, i ≥ 1, are given by their
Probability Generating Function ψ(w);

b) the lifetime YN = X1 + ... + XN is an absolutely continuous r.v. with
probability density function (p.d.f.) fYN

(x) given by Laplace Transform

ϕYN
(s) =

+∞∫
0

e−sxfYN
(x)dx =

A(θϕ(s))

A(θ)
,

as soon as Xi, i ≥ 1, are r.v. with p.d.f. given by their Laplace Transform
ϕ(s).

Even if it is difficult to deduce explicitly lifetime distribution from the
previous sentence, it is easy to calculate lifetime’s mean value and variance
due to

Consequence. In the conditions of Proposition 4 the following formulas
are valid:

EYN = EN · EX1, which coincides with Wald’s identity,

V ar(YN ) = (EX1)2 · V ar(N) + EN · V ar(X1).

Example 2. From the Proposition 3 we have that if
a) Xi ∼ Geom∗(p∗), p∗ ∈ (0, 1), i ≥ 1, and N ∼ Pascal(k; p), k ≥ 1,

p ∈ (0, 1), then the lifetime YN ∼ Pascal(k, pp∗);
b) Xi ∼ Exp(λ), λ > 0, i ≥ 1, and N ∼ Pascal(k; p), k ≥ 1, p ∈ (0, 1),

then the lifetime YN ∼ Erlang(k, λp).
Note that in most cases to find lifetime’s distribution on the base of Propo-

sition 3 numerical methods are required for inversion of the Probability Gener-
ating Function or Laplace Transform. But, in some special cases, the lifetime
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distribution may be approximated by its limit distribution, using, for example,
Brown’s Limit Theorem [2] or its expanded version:

Theorem [8]. If YN = X1+X2+...+XN , where (Xn)n≥1 are nonnegative
i.i.d.r.v. governed by the Strong Law of Large Numbers, i.e.,

P

(
lim

n→+∞

1

n

n∑
i=1

Xi =
1

λ

)
= 1, λ > 0

and N ∼ Pascal(k; p), k ∈ {1, 2, ...}, p ∈ (0, 1), r.v. N being indepen-
dent of r.v. (Xn),n≥1, then we have the following convergence in distribution:
λpYN =⇒

p−→0
Y , where the limit r.v. Y ∼ Erlang(k; 1).

Consequence [8] . In the conditions of the above Theorem, for very small
values of parameter p, p ∈ (0, 1), the c.d.f.

FYN
(x) = P(YN ≤ x) ' FY (x) = P(Y ≤ x) = 1− e−λpx

k−1∑
j=0

(λpx)j

j!
.

3. Approximations for some Min-PSD and Max-PSD lifetime
distributions.

Based on the above presented results, we can address the issue of the
approximation of Min-PSD and Max-PSD lifetime distributions, taking into
account that the lifetime distributions of the component elements are not
explicitly known.

Proposition 4. If Y1, Y2, ...Yi, ...are i.i.d.r.v., where Yi ∼ X1 +X2 + ...+
XN , for each i ≥ 1 is a random sum on the base of the sequence (Xn)n≥1 of
nonnegative i.i.d.r.v. governed by the Strong Law of Large Numbers, i.e.,

P

(
lim

n→+∞

1

n

n∑
i=1

Xi =
1

λ

)
= 1, λ > 0

and N ∼ Pascal(k; p), k ∈ {1, 2, ...}, p ∈ (0, 1), the r.v. N being independent
of r.v. (Xn),n≥1, then we have the following convergence in distribution of r.v.

λpUm(p) = λpmin(Y1, Y2, ..., Ym) =⇒
p→0

Um,

λpVm(p) = λpmax(Y1, Y2, ..., Ym) =⇒
p→0

Vm,
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where the c.d.f.

FUm(x) = P(Um ≤ x) =

1− e−mx
k−1∑
j=0

xj

j!

m I[0,+∞)(x),

FVm
(x) = P(Vm ≤ x) =

1− e−x
k−1∑
j=0

xj

j!

m

I[0,+∞)(x).

Proof. Because λpUm(p) = λpmin(Y1, Y2, ...Ym) = min(λpY1, λpY2, ..., λpYm)

and λpY1, λpY2, ..., λpYm are i.i.d.r.v. we have that

P(λpUm(p) ≤ x) = P(min(λpY1, λpY2, ..., λpYm) ≤ x) =

= 1− [1−P(λpY1 ≤ x)]
m

.

In the same way

P(λpVm(p) ≤ x) = P(max(λpY1, λpY2, ..., λpYm) ≤ x) =

[P(λpY1 ≤ x)]
m

.

But min(λpY1, λpY2, ..., λpYm) and max(λpY1, λpY2, ..., λpYm) are continuous
functions of r.v. λpY1, λpY2, ..., λpYm which, according to the previous Theo-
rem [8], weakly converges to the same Erlang distribution Erlang(k; 1). So,
using the expression of Erlang distribution Erlang(k; 1) and the above expres-
sions for P(λpUm(p) ≤ x), P(λpVm(p) ≤ x), we deduce explicitly their limit
distributions when p→ 0. �

Consequence 1. In the conditions of Proposition 4, for the small values
of parameter p, p ∈ (0, 1), we have the following formulas of approximations
for the lifetime’s c.d.f.

FUm(p)(x) = P(Um(p) ≤ x) '

1− e−λpmx
k−1∑
j=0

(λpx)j

j!

m I[0,+∞)(x),

FVm(p)(x) = P(Vm(p) ≤ x) '

1− e−λpx
k−1∑
j=0

(λpx)j

j!

m

I[0,+∞)(x).

Proof. Proposition 4 shows, in fact, that for the small values of parameter
p, p ∈ (0, 1) we have the following formulas of approximations for the lifetime’s
c.d.f.

FλpUm(p)(x) = P(λpUm(p) ≤ x) '

1− e−mx
k−1∑
j=0

xj

j!

m I[0,+∞)(x),
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FλpVm(p)(x) = P(λpVm(p) ≤ x) '

1− e−x
k−1∑
j=0

xj

j!

m

I[0,+∞)(x).

But these formulas are equivalent to the formulas from our consequence be-
cause, for example,

FUm(p)(x) = P(λpUm(p) ≤ λpx) '

[
1− e−mλpx

(
k−1∑
j=0

(λpx)j

j!

)m]
I[0,+∞)(x). �

The fact that the 0−truncated geometrical distribution with parameter p ∈
(0, 1) coincides with the Pascal distribution Pascal(1; p) implies the following

Consequence 2. In conditions of Proposition 4, if N ∼ Geom∗(p),
p ∈ (0, 1), then

λpUm(p) = λpmin(Y1, Y2, ..., Ym) =⇒
p→0

Um,

λpVm(p) = λpmax(Y1, Y2, ..., Ym) =⇒
p→0

Vm,

where the c.d.f.

FUm(x) = P(Um ≤ x) = (1− e−mx) I[0,+∞)(x),

FVm(x) = P(Vm ≤ x) = (1− e−x)mI[0,+∞)(x).

This means that, for very small values of parameter p, p ∈ (0, 1), we have the
following formulas of approximations for the lifetime’s c.d.f.

FUm(p)(x) = P(Um(p) ≤ x) '
[
1− e−λpmx

]
I[0,+∞)(x),

FVm(p)(x) = P(Vm(p) ≤ x) '
(
1− e−λpx

)m
I[0,+∞)(x).

If in Proposition 4 we will give up the supposition that the number m
is fixed, by replacing it with a random number M ∈ PSD, then we may
formulate its extension as a

Proposition 5. If Y1, Y2, ...Yi, ...are i.i.d.r.v., where Yi ∼ X1 + X2 +
... + XN for each i ≥ 1 is a sum on the base of the sequence (Xn)n≥1 of
nonnegative i.i.d.r.v. governed by the Strong Law of Large Numbers, i.e.,

P

(
lim

n→+∞

1

n

n∑
i=1

Xi =
1

λ

)
= 1, λ > 0

and the the r.v. N ∼ Pascal(k; p), k ∈ {1, 2, ...}, p ∈ (0, 1), N being in-
dependent of r.v. (Xn),n≥1, then for each random number M ∈ PSD with
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parameter θ ∈ (0, τ), τ ∈ (0,+∞) ∪ {+∞}, and its power series function
A(θ) =

∑
k>0

akθ
k, M being independent of r.v. (Ym)m≥1, we have the follow-

ing convergence in distribution of r.v.

λpUM (p) = λpmin(Y1, Y2, ..., YM ) =⇒
p→0

U,

λpVM (p) = λpmax(Y1, Y2, ..., YM ) =⇒
p→0

V,

where the c.d.f.

FU (x) = P(U ≤ x) =

1−A

θe−x k−1∑
j=0

xj

j!

 �A(θ)

 I[0,+∞)(x),

FV (x) = P(V ≤ x) =

A
θ
1− e−x

k−1∑
j=0

xj

j!

 �A(θ)

 I[0,+∞)(x).

Proof. Let’s observe that, from Formula of Total Probability, we have

P(λpUM (p) ≤ x) = P(λpmin(Y1, Y2, ..., YM ) ≤ x) =∑
m≥1

P({λpmin(Y1, Y2, ..., YM ) ≤ x} �{M = m}) · P(M = m) =

∑
m≥1

P(λpmin(Y1, Y2, ..., Ym) ≤ x) · amθ
m

A(θ)
.

But, according Proposition 5, λpmin(Y1, Y2, ..., Ym) =⇒
p→0

Um, where

FUm(x) = P(λpmin(Y1, Y2, ..., Ym) ≤ x) =

1−

e−xk−1∑
j=0

xj

j!

m I[0,+∞)(x).

So, λpmin(Y1, Y2, ..., YM ) =⇒
p→0

U , where

FU (x) = P(U ≤ x) =
∑
m≥1

1−

e−xk−1∑
j=0

xj

j!

m I[0,+∞)(x) · amθ
m

A(θ)
=

=

1−A

θe−x k−1∑
j=0

xj

j!

 �A(θ)

 I[0,+∞)(x).
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In the same way, we may prove the second part of our Proposition. �
Consequence 1. In the conditions of Proposition 5, for very small values

of parameter p, p ∈ (0, 1), we have the following formulas of approximations
for the lifetime’s c.d.f.

FUM (p)(x) = P(UM (p) ≤ x) '

[
1−A

(
θe−λpx

k−1∑
j=0

(λpx)j

j!

)
�A(θ)

]
I[0,+∞)(x),

FVM (p)(x) = P(VM (p) ≤ x) '

[
A

(
θ

(
1− e−λpx

k−1∑
j=0

(λpx)j

j!

))
�A(θ)

]
I[0,+∞)(x).

Now, using the PSD form of the 0−truncated geometrical distribution and
the past Consequence 1, we have the

Consequence 2. In the conditions of Proposition 5, for very small values
of parameter p, p ∈ (0, 1), if the r.v. M ∼ Geom∗(p∗), p∗ ∈ (0, 1), then we
have the following formulas of approximations for the lifetime’s c.d.f.

FUM (p)(x) = P(UM (p) ≤ x) '


1− e−λpx

k−1∑
j=0

(λpx)j

j!

1− (1− p∗)e−λpx
k−1∑
j=0

(λpx)j

j!

 I[0,+∞)(x),

FVM (p)(x) = P(VM (p) ≤ x) '
p∗

(
1− e−λpx

k−1∑
j=0

(λpx)j

j!

)

1− (1− p∗)

(
1− e−λpx

k−1∑
j=0

(λpx)j

j!

)I[0,+∞)(x).

Conclusion. Comparing the c.d.f. FUM (p)(x) and FVM (p)(x) which
describes the probabilistic behavior of lifetime, respectively for serial and par-
allel Networks with replaceable units and random number of units, we may
deduce, for example, from Consequence 2, that FUM (p)(x) > FVM (p)(x) for
every real x. Indeed, to verify that for x ∈ [0,+∞), it is sufficient to verify
that the difference

1

1− (1− p∗)e−λpx
k−1∑
j=0

(λpx)j

j!

− p∗

1− (1− p∗)

(
1− e−λpx

k−1∑
j=0

(λpx)j

j!

) =
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=

(1− p∗)(1 + p∗)e−λpx
k−1∑
j=0

(λpx)j

j![
1− (1− p∗)e−λpx

k−1∑
j=0

(λpx)j

j!

][
1− (1− p∗)

(
1− e−λpx

k−1∑
j=0

(λpx)j

j!

)] > 0.

This is true because p∗ ∈ (0, 1) and all the functions appearing in the last
fraction are non-negatives. So, survival/reliability functions SUM (p)(x) =
1 − FUM (p)(x) 6 SVM (p)(x) = 1 − FVM (p)(x). In other words, in our cir-
cumstances, the reliability of parallel Networks is higher than the reliability
of serial Networks. By the way, this corresponds to the common sense consid-
erations.
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