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Abstract The present paper treats the topic of the distribution of the maximum and minimum of
a sequence of an independent identically distributed random variables (i.i.d.r.v.) in a
random number in a unitary manner and from the perspective of the power series dis-
tribution class. The general formulas are obtained, and by using concrete examples,
they lead to some of the distributions obtained by Adamidis and Loukas (1998), Kus
(2007), Tahmasbi and Rezaei (2008), Leahu and Lupu (2010), Baretto-Souza, Morais
and Cordeiro (2011), Morais and Baretto-Souza (2011), Cancho, Louzada and Bar-
riga (2011), Louzada, Roman and Cancho (2011), Flores, Borges, Cancho and Louzada
(2013). Examples of new distributions are also presented.
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1. INTRODUCTION

The introduction of this new (generalized) distribution is connected with reliability
problems when lifetime can be expressed as the maximum or minimum of a sequence
of i.i.d.r.v., which represents the risk times of the system components. In recent years,
some researchers have proposed a series of new distributions for the maximum and
minimum of a sequence of i.i.d.r.v.. For example, Adamidis and Loukas [1], Kus [6],
Tahmasbi and Rezaei [12], Leahu and Lupu [7], Louzada, Roman and Cancho [9],
as well as the Cancho, Louzada and Barriga [3], have been concerned with deter-
mining the maximum or minimum distribution when the components in a sequence
of i.i.d.r.v. are exponentially distributed, and the number of the components are of
a discrete type. Next, Flores, Borges, Cancho and Louzada [4] treat the distribu-
tion of a vector’s maximum with components that are exponentially distributed in
an random number of a power series distribution type. This type of distribution is
called complementary exponential power series (CEPS) distribution. Also, Morais
and Baretto-Souza [11] considered the analysed Weibull distribution class by means
of the power series distribution class (WPS). Recently, Louzada, Bereta and Franco
[10] have formulated a mathematical model that unifies the procedure for obtaining a
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distribution of the maximum and minimum of a sequence of i.i.d.r.v. of the absolutely
continuous type in a random number N characterized by the generating function. But
the problem of determining the general formula when the r.v. N forms part of a power
series distributions remains unsolved.

2. THE POWER SERIES DISTRIBUTION OF
THE MAXIMUM AND MINIMUM

Let us consider r.v. Z such that P (Z ∈ {1, 2, . . .}) = 1.

Definition 2.1. ([5]) We say that r.v. Z has a power series distribution if:

P (Z = z) =
azΘ

z

A(Θ)
, z = 1, 2, . . . ; Θ ∈ (0, τ); (1)

where a1, a2, . . . are nonnegative real numbers, τ is a positive number bounded by the
convergence radius of power series (series function) A (Θ) =

∑
z≥1

azΘ
z, ∀ Θ ∈ (0, τ),

and Θ is power parameter of the distribution (Table 1).

PSD denotes the power series distribution functions class. If the r.v. Z has the
distribution from relationship (1), then we write that Z ∈ PS D.

Table 1: The representative elements of the PSD class for various truncated distribu-
tions

Distribution az Θ A(Θ) τ

Binom∗(n, p)
(
n
z

)
p

1−p (1 + Θ)n − 1 ∞

Poisson∗(α) 1
z! α eΘ − 1 ∞

Log(p) 1
z p −ln(1 − Θ) 1

Geom∗(p) 1 1 − p Θ
1−Θ 1

Pascal(k, p)
(

z−1
k−1

)
1 − p

(
Θ

1−Θ
)k

1

Bineg∗(k, p)
(
z+k−1

z

)
p (1 − Θ)−k − 1 1

On the other hand, as Z is a r.v. discrete type for which P (Z ∈ {1, 2, . . .}) = 1, then
we can write its distribution function:
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FZ(x) = P (Z ≤ x) =


0 if x < 1

[x]∑
z=1
P (Z = z) if x ≥ 1. .

Therefore we can formulate the following proposition which characterizes the
power series distribution class.

Proposition 2.1. The necessary and sufficient condition for the r.v. Z to have a power
series distribution is that the distribution function be characterized by:

FZ(x) =
[x]∑
z=1

azΘ
z

A(Θ)
, x ≥ 1, (2)

where the entities (az)z≥1, Θ, A(Θ) are characterized by the Definition 2.1.

Proof. Necessity: assume that r.v. Z ∈ PS D. Then in accordance with Definition 2.1,
this has the distribution

Z :
 1 2 3 . . . n . . .

a1Θ
A(Θ)

a2Θ
2

A(Θ)
a3Θ

3

A(Θ) . . .
anΘ

n

A(Θ) . . .

 .
Then the distribution function FZ(x) = P(Z ≤ x) =

∑
z≤x
P(Z = z) =

[x]∑
z=1

azΘ
z

A(Θ) .

Sufficiency: assume that r.v. Z has the distribution function characterized by the re-
lationship (2). With this we can restore the values of the r.v., namely P (Z ∈ {1, 2, . . .} = 1),

as well as the probabilities. We have that: P(Z = i) = F(i) − F(i − 0) =
i∑

z=1

azΘ
z

A(Θ) −
i−1∑
z=1

azΘ
z

A(Θ) =
azΘ

z

A(Θ) , therefore Z ∈ PS D.

The next result defines the distribution function for the maximum and minimum
of a sequence of i.i.d.r.v. in random number.

Proposition 2.2. If r.v. U = max {X1, X2, . . . , XZ} and V = min {X1, X2, . . . , XZ},
where (Xi)i≥1 are nonnegative i.i.d.r.v., with the known distribution function FXi(x) =
F(x), ∀x > 0 and Z ∈ PS D with P (Z = z) = azΘ

z

A(Θ) , z = 1, 2, . . . ; Θ ∈ (0, τ), τ > 0,
r.v. (Xi)i≥1 and Z being independent, then the distribution function of the r.v. U,
respectively V are the following:

U(x) =
A [ΘF(x)]

A(Θ)
, x > 0, (3)

V(x) = 1 − A [Θ(1 − F(x))]
A(Θ)

, x > 0. (4)
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Proof. For Z = z, the distribution function of the maximum of a sample of size z with
the distribution function F, is Uz(x) = [F(x)]z. Using the total probability formula,
then the distribution function of the maximum of a sequence of i.i.d.r.v. in random
number Z has the expression U(x) =

∑
z≥1

Uz(x) · P (Z = z) =
∑
z≥1

[F(x)]z · P (Z = z).

Since Z ∈ PS D (the relationship (1)), the result is relationship (3).
In the case of the minimum, we have V(x) =

∑
z≥1

Vz(x) · P (Z = z), where the dis-

tribution function of the minimum of a sample of size z, is characterized by the rela-
tionship Vz(x) = 1 − [1 − F(x)]z.

Therefore,

V(x) =
∑
z≥1

[
1 − [1 − F(x)]z] · P (Z = z)

= 1 −
∑
z≥1

az [Θ(1 − F(x))]z

A(Θ)
.

Taking into account the definition of A(Θ), relation (4) is obtained.

The following results characterize the survival functions and the probability den-
sity functions (pdf) for the maximum, respectively minimum of a sequence of i.i.d.r.v.
in random number.

Consequence 2.1. If r.v. U = max {X1, X2, . . . , XZ} and V = min {X1, X2, . . . , XZ},
where (Xi)i≥1 are nonnegative i.i.d.r.v., with the known distribution function FXi(x) =
F(x), ∀x > 0 and Z ∈ PS D with P (Z = z) = azΘ

z

A(Θ) , z = 1, 2, . . . ; Θ ∈ (0, τ), τ >
0, r.v. (Xi)i≥1 and Z being independent, then the survival function of the r.v. U,
respectively V are the following:

S U(x) = 1 − A [ΘF(x)]
A(Θ)

, x > 0, (5)

S V (x) =
A [Θ(1 − F(x))]

A(Θ)
, x > 0. (6)

Consequence 2.2. If r.v. U = max {X1, X2, . . . , XZ}, where (Xi)i≥1 are nonnegative
i.i.d.r.v., absolutely continuous type, with the known pdf fXi(x) = f (x), ∀x > 0 and
Z ∈ PS D with P (Z = z) = azΘ

z

A(Θ) , z = 1, 2, . . . ; Θ ∈ (0, τ), τ > 0, r.v. (Xi)i≥1 and Z
being independent, then the pdf of the r.v. U is the following:

u(x) =
Θ f (x)A

′
[ΘF(x)]

A(Θ)
, x > 0. (7)

Proof. The pdf of the r.v. U is obtained by determining the derivative of the relation-
ship (3) with respect to variable x.
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Consequence 2.3. If r.v. V = min {X1, X2, . . . , XZ}, where (Xi)i≥1 are nonnegative
i.i.d.r.v., absolutely continuous type, with the known pdf fXi(x) = f (x), ∀x > 0 and
Z ∈ PS D with P (Z = z) = azΘ

z

A(Θ) , z = 1, 2, . . . ; Θ ∈ (0, τ), τ > 0, r.v. (Xi)i≥1 and Z
being independent, then the pdf of the r.v. V is the following:

v(x) =
Θ f (x)A

′
[Θ(1 − F(x))]
A(Θ)

, x > 0. (8)

Proof. By determining the derivative of the relationship (4) with respect to variable
x, (8) is obtained.

In the above conditions, the hazard rate under definition, we can formulate the
following proposition:

Proposition 2.3. The hazard rate for the r.v. U, respectively V are characterized by
the following relations:

hU(x) =
u(x)

1 − U(x)
=
Θ f (x)A

′
[ΘF(x)]

A(Θ) − A [ΘF(x)]
,

and

hV (x) =
v(x)

1 − V(x)
=
Θ f (x)A

′
[Θ(1 − F(x))]

A [Θ(1 − F(x))]
.

The next result shows a characteristic of the distribution of the maximum of a
random number of i.i.d.r.v. with the distribution function FXi(x) ≡ F(x), x > 0.

Proposition 2.4. If (Xi)i≥1 is a sequence of i.i.d.r.v., nonnegative, absolutely con-
tinuous type, with the distribution function FXi(x) ≡ F(x), x > 0 and Z ∈ PS D
with P (Z = z) = azΘ

z

A(Θ) , (az)z≥1 a sequence of nonnegative real numbers; A (Θ) =∑
z≥1

azΘ
z, ∀ Θ ∈ (0, τ), then r.v. U = max {X1, X2, . . . , XZ} has the limited distribu-

tion F if Θ→ 0+. In other words,

lim
Θ→0+

U(x) = [F(x)]k , x > 0

where k = min {n ∈ N∗, an > 0}.
Proof. By using the power series in (3) and by passing to the limit when Θ → 0+,
we obtain:

lim
Θ→0+

U(x) = lim
Θ→0+

A [ΘF(x)]
A(Θ)

=
0
0
.

By applying the l ′ Hospital rule k-time, we have:

lim
Θ→0+

U(x) = lim
Θ→0+

A(k) [ΘF(x)] · [F(x)]k

A(k)(Θ)

=
k!ak [F(x)]k

k!ak
= [F(x)]k , x > 0
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and k = min {n ∈ N∗, an > 0} .

Similarly, we can formulate a result regarding the distribution of the minimum of
a sequence of i.i.d.r.v. in a random number.

Proposition 2.5. Given the conditions the hypothesis of Proposition 2.4, r.v. V =
min {X1, X2, . . . , XZ} has the limited distribution F if Θ→ 0+, or

lim
Θ→0+

V(x) = 1 − [1 − F(x)]l , x > 0

where l = min {n ∈ N∗, an > 0}.

The expressions of the rth moments of the two distributions (maximum and mini-
mum) can be derived as follows.

Proposition 2.6. The rth moment, r ∈ N, r ≥ 1 of the r.v. U = max {X1, X2, . . . , XZ},
where Z ∈ PS D, is given by:

EUr =
∑
z≥1

azΘ
z

A(Θ)
E

[
max {X1, X2, . . . , Xz}

]r . (9)

Proof. By using the total probability formula with the help of the conditional mean,
we obtain:

EUr = E
(
EUr |Z = z

)
=

∑
z≥1

E
[
max {X1, X2, . . . , Xz}

]r · P(Z = z)

=
∑
z≥1

azΘ
z

A(Θ)
· E [

max {X1, X2, . . . , Xz}
]r

and this ends the proof.

Similarly, we obtain the sth moment, s ∈ N, s ≥ 1 of the r.v. V:

EV s =
∑
z≥1

azΘ
z

A(Θ)
E

[
min {X1, X2, . . . , Xz}

]s . (10)

Consequence 2.4. If (Xi)i≥1 is a sequence of i.i.d.r.v., nonnegative, absolutely con-
tinuous type, with the distribution function FXi(x) ≡ F(x), x > 0 and pdf fXi(x) ≡
f (x), x > 0, then the rth and sth moments, r, s ∈ N, r, s ≥ 1 of the r.v. U, respectively
V are given by (9) and (10) where pdf ′ s fmax{X1, X2,...,Xz}(x) = z f (x) [F(x)]z−1 and
fmin{X1, X2,...,Xz}(x) = z f (x) [1 − F(x)]z−1.



On the lifetime as the maximum or minimum of the sample... 125

3. SPECIAL CASES

This section presents examples of the distribution class of the maximum (U) and
minimum (V) of a sequence (Xi)i≥1 of i.i.d.r.v., nonnegative, of the absolutely contin-
uous type. Briefly, let us call them the Max-Poisson distribution and the Min-Poisson
distribution. The special cases are accompanied by expressions of the distribution
function, the pdf, the hazard rate, the survival function, the mean and the variance.

3.1. THE MAX-POISSON DISTRIBUTION

In this subsection we present general distributions , which, when using concrete
examples, can lead us to the complementary exponential Poisson distribution intro-
duced by Cancho and others [3]. How Z ∼ Poisson⋆(α) ∈ PS D, α > 0, and
A(Θ) = eΘ − 1, Θ = α, then the distribution function of the r.v. UPoisson is:

UPoisson(x) =
eΘF(x) − 1

eΘ − 1
, x > 0, (11)

and the pdf., hazard rate and survival function are given by:

uPoisson(x) =
Θ f (x)eΘF(x)

eΘ − 1
, (12)

hUPoisson(x) =
Θ f (x)eΘF(x)

eΘ − eΘF(x)

and

S UPoisson(x) =
eΘ − eΘF(x)

eΘ − 1
.

The mean and variance of the Max-Poisson distribution are given by:

E UPoisson =
1

eΘ − 1

∑
z≥1

azΘ
zE

[
max {X1, X2, . . . , Xz}

]
,

and

Var UPoisson =
1

eΘ − 1

∑
z≥1

azΘ
zE

[
max {X1, X2, . . . , Xz}

]2 −

− 1
eΘ − 1

∑
z≥1

azΘ
zE

[
max {X1, X2, . . . , Xz}

]2 .
Particular case: if Xi ∼ Exp(λ), λ > 0, then the relationships (11) and (12) lead to

the distribution function introduced by Cancho and others [3]:
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UExp−Poisson(x) =
e−αe−λx − e−α

1 − e−α

and

uExp−Poisson(x) =
αλe−λx−αe−λx

1 − e−α
.

3.2. THE MIN-POISSON DISTRIBUTION

A new general distribution is illustrated in this section given the fact that V =
min {X1, X2, . . . , XZ}, Z ∼ Poisson⋆(α) ∈ PS D, α > 0, A(Θ) = eΘ − 1, Θ = α,
while (Xi)i≥1 are i.i.d.r.v. absolutely continuous and nonnegative type.

Taking into account the relations (4) and (8) we obtain the distribution function,
the pdf, the hazard rate and the survival function

VPoisson(x) =
eΘ − eΘ(1−F(x))

eΘ − 1
, (13)

vPoisson(x) =
Θ f (x)eΘ(1−F(x))

eΘ − 1
, (14)

while

hVPoisson(x) =
Θ f (x)eΘ(1−F(x))

eΘ − eΘ(1−F(x))

and

S VPoisson(x) =
eΘ(1−F(x)) − 1

eΘ − 1
.

The mean and variance of the Min-Poisson distribution are:

E VPoisson =
1

eΘ − 1

∑
z≥1

azΘ
zE

[
min {X1, X2, . . . , Xz}

]
,

while

Var VPoisson =
1

eΘ − 1

∑
z≥1

azΘ
zE

[
min {X1, X2, . . . , Xz}

]2 −

− 1
eΘ − 1

∑
z≥1

azΘ
zE

[
min {X1, X2, . . . , Xz}

]2 .
Particular case: if Xi ∼ Exp(λ), λ > 0, then through the relationships (13) and

(14), the distribution function and the pdf, obtained by Kus [6] are the following:

VExp−Poisson(x) =
1 − e−ΘF(x)

1 − e−Θ
=

1 − e−α(1−e−λx)

1 − e−α
,



On the lifetime as the maximum or minimum of the sample... 127

and:

vExp−Poisson(x) =
Θ f (x)e−ΘF(x)

1 − e−Θ
=
αλe−α−λx+αe−λx

1 − e−α
.

4. ON SOME DISTRIBUTIONS IN PROGRESS

We present in tabular form the different distributions that have been discussed and
analyzed by some researchers in works [6] and [11], as well as an example of the new
Gamma-Poisson distribution for the minimum and the Weibull-Poisson distribution
for the maximum. The distribution function and the pdf are determined for each case.

Table 2: Distribution function and pdf of the r.v. VPoisson for different combinations

Authors Distribution Distribution Probability
Z Xi function density

Kus(2007)

Poisson⋆(α)
Exp(λ) 1−eα(e−λx−1)

1−e−α
αλe−α−λx+αe−λx

1−e−α
Morais and

Bareto-Souza

(2011)

Weibull(λ, ν) eα−eαe−( x
λ )ν

eα−1
α ν
λ ( x

λ )ν−1e−( x
λ )νeαe

−( x
λ )ν

eα−1

New Gamma(a, b) e
αe−bx a−1∑

i=0

(bx)i
i!

eα−1
αba xa−1e

−bx+αe−bx a−1∑
i=0

(bx)i
i!

(a−1)!(eα−1)

Table 3: Distribution function and pdf of the r.v. UPoisson for different combinations

Authors Distribution Distribution Probability
Z Xi function density

Cancho and al
(2011) Poisson⋆(α) Exp(λ) e−αe−λx−e−α

1−e−α
αλe−λx−αe−λx

1−e−α

New Weibull(λ, ν) e−αe
−( x

λ )ν−e−α
1−e−α

α ν
λ ( x

λ )ν−1eα
ν
λ ( x

λ )ν−1
e
−( x

λ )ν−( x
λ )ν

eα−1
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