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An abstract approach to the study of derivation

mappings on non-commutative rings

Elena P. Cojuhari

Abstract. An abstract approach to the study of derivation mappings on non-commu-
tative rings is undertaken. These mappings are indexed by elements of multiplicative
monoid. We describe completely the derivation mappings in the case of a monoid
generated by two elements.
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1 Introduction

Let A be a ring (in general, non-commutative) and 1 6= 0, where 0 is the null
element of A and 1 is the unit element for multiplication. Let G be a multiplicative
monoid in which the unit element is denoted by e.

For each x ∈ G we consider a family σx = (σx,y)y∈G of mappings σx,y : A −→ A

introduced by the following assumption.

(A) For each x ∈ G there exists a unique family σx = (σx,y)y∈G of mappings
σx,y : A −→ A such that σx,y = 0 for almost all y ∈ G (here and thereafter, almost
all will mean all but a finite number, that is, σx,y 6= 0 only for a finite set of y ∈ G)
and for which the following properties are fulfilled:

(i) σx,y(a + b) = σx,y(a) + σx,y(b) (a, b ∈ A;x, y ∈ G);

(ii) σx,y(ab) =
∑

z∈G σx,z(a)σz,y(b) (a, b ∈ A;x, y ∈ G);

(iii) σxy,z =
∑

uv=z σx,u ◦ σy,v (x, y, z ∈ G);

(iv1) σx,y(1) = 0 (x 6= y;x, y ∈ G); (iv2) σx,x(1) = 1 (x ∈ G);

(iv3) σe,x(a) = 0 (x 6= e;x ∈ G); (iv4) σe,e(a) = a (a ∈ A).

The condition (i) implies that σx,y are homomorphisms with respect to addition
of the abelian group of the ring A. Due to the properties from (A) the mappings σx,y

can be called derivations of the ring A. Thus we say that on the ring A a structure
of differentiation σ is defined .

Further, we consider the monoid algebra denoted by A〈G〉. Namely, the elements
of A〈G〉 are mappings α : G −→ A which we write as

α =
∑

x∈G

ax · x, (1.1)
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where a · x denotes the mapping from G into A whose value at x is a and 0 at
elements different from x. In (1.1) the sum is taken over almost all x ∈ G, that is
the sum is taken over only a finite set. Obviously, A〈G〉 is a left A-module if the
action of A on A〈G〉 is defined by

αa =
∑

x∈G

(aax) · x (a ∈ A).

A〈G〉 becomes a ring (generally, non-commutative) in respect to the operations

∑

x∈G

ax · x +
∑

x∈G

bx · x =
∑

x∈G

(ax + bx) · x,

(a · x)(b · y) =
∑

z∈G

aσx,z(b) · zy (a, b ∈ A;x, y ∈ G)

and extending with regard to the distributive law by

(

∑

x∈G

ax · x
)(

∑

x∈G

bx · x
)

=
∑

x∈G

∑

y∈G

(ax · x)(by · y).

In [1] we construct a category C in which A〈G〉 as an object of it has the universality
property. Therefore, it could be applied the well-known construction [2] of skew
polynomials of one or several variables over non-commutative ring A.

In the present paper we consider a particular case which is useful in studying
skew polynomials of one variable. This particular case refers to the situation in
which the monoid G is generated by two elements e and x, where x 6= e. This
case permits us being in some supplemental assumptions to describe completely
mappings of derivation σx,y (x, y ∈ G) (see Theorem 6 and 8, below). For example,
if we consider σn,m = 0 for n < m, where in convenient notation σnm := σxn,xm

(n,m = 0, 1, . . . ;x0 := e), then as it turns out that σnn is a ring-homomorphism
for any n, σ10 is a (σ11, 1)−derivation of A (Proposition 2). (The definition of
(α, β)−derivation see, for example, in Cohn [3]). If in addition we assume σ11 is
an automorphism then the same could be concluded for mappings σnn. Moreover,
the mapping δ0 := σ21 ◦ σ−1

11
is a (σ11, 1)−derivation of A, as well, and generally,

the mappings δn defined by δn = δ0 ◦ σnn (◦ denotes the composition of mappings)
for any n = 0, 1, 2, . . ., are (σn+1 n+1, σnn)− derivations of the ring A (see Theorem
5). In Section 2 we give formulas in which σn0 and σnn are expressed by σ10 and
σ11. We also consider here the dual case to the previous one, and namely, the case
in which σn,m = 0 for n > m. In certain supplementary conditions the derivation
mapping γ0 given by the relation γ0 ◦ σ11 = σ12 is a nilpotent mapping. We note
that the results of Section 2 generalize some results obtained for skew polynomials
in one variables by Smits in [4, 5] (see also Theorem 8.5, pp. 38–39 [3]).
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2 Main results

Throughout the paper we study exclusively the particular case in which the
monoid G is generated by two elements e and x, where x 6= e. This case is especially
important in the study of the ring of skew polynomials in one variable.

Supposing the assumption (A) in what follows, we denote

σnm := σxn,xm (n,m = 0, 1, . . .). (2.1)

Then the formula from the condition (ii) of (A) can be written as follows

σnm(ab) =

∞
∑

j=0

σnj(a)σjm(b) (a, b ∈ A; n,m = 0, 1, . . .), (2.2)

where as before the sum is taken for almost all j = 0, 1, . . . .

Next we form the matrix

σ(a) = [σnm(a)]∞n,m=0 (a ∈ A), (2.3)

and we have seen that the formula (2.2) can be written as follows

σ(ab) = σ(a)σ(b) (a, b ∈ A),

where the multiplication in the right side is the usual multiplication of matrices. In
addition, we note also that

σ(a + b) = σ(a) + σ(b) (a, b ∈ A),

that follows at once by the condition (i) of (A). Thus, the following assertion can
be formulated.

Proposition 1. The mapping σ : a −→ σ(a) determines a matrix representation of
A (in general of infinite degree).

In our notation the formula from the condition (iii) of (A) is written as follows

σnm =
∑

j1+...+jn=m

σ1j1 ◦ · · · ◦ σ1jn
(n,m = 0, 1, . . .) (2.4)

in which jk = 0, 1, 2, . . . for k = 1, . . . , n.

1. (The case (A
′

)). In this subsection we discuss the following case.

(A
′

) The mappings σnm defined by (2.1) are such that σnm = 0 for n < m. In
this case the matrix representation σ given by (2.3) has a lower triangular form, and
the formula (2.2) is written as the following

σnm(ab) =

n
∑

j=m

σnj(a)σjm(b) (a, b ∈ A; n ≥ m, n,m = 0, 1, 2, . . .). (2.5)
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In particular,

σn0(ab) =

n
∑

j=0

σnj(a)σj0(b) (a, b ∈ A; n = 0, 1, . . .). (2.6)

For n = 1 the formula (2.6) is written as follows

σ10(ab) = σ10(a)σ00(b) + σ11(a)σ10(b),

and since, by the condition (iv4) of (A), σ00(b) = b we have

σ10(ab) = σ11(a)σ10(b) + σ10(a)b (a, b ∈ A).

It should be mentioned that for any n = 0, 1, 2, . . . the formula (2.5) implies

σnn(ab) = σnn(a)σnn(b) (a, b ∈ A)

and the condition (i) of (A) becomes

σnn(a + b) = σnn(a) + σnn(b) (a, b ∈ A).

So, σnn is a ring-homomorphism. Thus we can formulate the following assertion.

Proposition 2. Under the assumption (A
′

) the mapping σ10 is a (σ11, 1)− deriva-
tion of A.

It is clear that, due to the assumption (A
′

), the formula (2.4) can be written as
follows

σnm =
∑

j1+...+jn=m

σ1j1 ◦ · · · ◦ σ1jn
(n,m = 0, 1, 2, . . .), (2.7)

where jk = 0, 1 (k = 1, ..., n).

In particular,

σn0 = σn
10 (n = 0, 1, 2, . . .), (2.8)

and

σnn = σn
11 (n = 0, 1, 2, . . .). (2.9)

Further properties of the mappings σnm will be obtained by supposing the fol-
lowing assumption.

(B) The mapping σ11 is an automorphism of the ring A.

Then, by formula (2.9), the following assertion follows immediately.

Proposition 3. The mappings σnn (n = 0, 1, . . .) are automorphisms of the ring A.
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Next, we define
δ0 := σ21 ◦ σ−1

11
, (2.10)

where σ−1
11

denotes the inverse of σ11. We observe that (by using the law of multi-
plication (2.5) and the relations (2.9))

δ0(ab) = (σ21 ◦ σ−1
11

)(ab) = σ21(σ
−1
11

(ab)) = σ21(σ
−1
11

(a)σ−1
11

(b)) =

= σ21(σ
−1
11

(a))σ11(σ
−1
11

(b)) + σ22(σ
−1
11

(a))σ21(σ
−1
11

(b)) =

= (σ21 ◦ σ−1

11
)(a)b + (σ22 ◦ σ−1

11
)(a)(σ21 ◦ σ−1

11
)(b) =

= δ0(a)b + σ11(a)δ0(b) = σ11(a)δ0(b) + δ0(a)b,

i.e.
δ0(ab) = σ11(a)δ0(b) + δ0(a)b (a, b ∈ A).

Thus, we have

Proposition 4. Under the assumptions (A
′

) and (B) the mapping δ0 defined by
(2.10) represents a (σ11, 1) – derivation of the ring A.

Let us now consider the following mappings

δn := σ21 ◦ σn−1 n−1 (n = 1, 2, . . .)

which in accordance with (2.9) can be represented as follows

δn = σ21 ◦ σn−1
11

(n = 1, 2, . . .).

We observe that

δn = σ21 ◦ (σ−1
11

◦ σnn) = (σ21 ◦ σ−1
11

) ◦ σnn = δ0 ◦ σnn,

so that
δn = δ0 ◦ σnn (n = 0, 1, 2, . . .).

Theorem 5. Under the hypotheses of Proposition 4 the mapping δn for each
n = 0, 1, 2, . . . is a (σn+1 n+1, σnn) – derivation of the ring A.

Proof. By Propositions 3 and 4 we emphasize the fact that σnn is an automorphism
of the ring A and that the mapping δ0 is a (σ11, 1) – derivation of A.

We have

δn(ab) = (δ0 ◦ σnn)(ab) = δ0(σnn(ab)) = δ0(σnn(a)σnn(b)) =

= σ11(σnn(a))δ0(σnn(b)) + δ0(σnn(a))σnn(b) =

= σn+1 n+1(a)δn(b) + δn(a)σnn(b),

that is

δn(ab) = σn+1 n+1(a)δn(b) + δn(a)σnn(b) (a, b ∈ A; n = 0, 1, 2, . . .),

and the assertion follows. 2

Finally, we remark the following consequence of the formula (2.7).
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Theorem 6. Every mapping σnm (m = 0, 1, . . . , n; n = 0, 1, 2, . . .) is expressed by
the derivation σ10 and the homomorphism σ11.

Also from the formula (2.7), as it is easy to see, it can be concluded that the
mapping σnm (m = 0, 1, ..., n) represents the coefficient at tm of the formal extension
of the binomial (σ10 + σ11t)

n. Thus, taking into account the relations (2.8) for the
derivation of higher order σn

10 we can write

σn
10(ab) =

n
∑

m=0

σnm(a)σm
10(b) (a, b ∈ A; n = 0, 1, . . .). (2.11)

For the particular case σ11 = 1 from (2.11) it follows the classical formula of Leibnitz

σn
10(ab) =

n
∑

m=0

(

n

m

)

σn−m
10

(a)σm
10(b) (a, b ∈ A; n = 0, 1, . . .).

2. (The case (A
′′

)). In this subsection we make some remarks on another
situation.

Let us assume

(A
′′

) The mappings σnm defined by (2.1) are such that σnm = 0 for n > m.

Some formulae and statements are similar to those from the previous case of
(A

′

). We will restrict ourselves only to their enumeration and, concomitantly, we
will give other special properties for considered case.

Thus, in the case of (A
′′

), we have the following properties.

1) σnm = 0 for n > m (n,m = 0, 1, 2, . . .);

2) The matrix representation σ of A has an upper triangular form at each element
a ∈ A;

3) The formula of multiplication (2.2) becomes to be of the form

σnm(ab) =

m
∑

j=n

σnj(a)σjm(b) (a, b ∈ A; n ≤ m, n,m = 0, 1, . . .). (2.12)

4) σnn for each n = 0, 1, 2, . . . is a ring-homomorphism;

5) The formula (2.4) implies that

σnn =
∑

j1+···+jn=n

σ1j1 ◦ · · · ◦ σ1jn
= σ11 ◦ · · · ◦ σ11 = σn

11,

i.e.
σnn = σn

11 (n = 1, 2, . . .). (2.13)

If, in addition, the assumption (B) is supposed, i.e. the mapping σ11 is an
automorphism of the ring A, then
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6) The mappings σnn (n = 0, 1, 2, . . .) are also automorphisms of A;

7) The mapping

γ0 := σ12 ◦ σ−1
11

(2.14)

is a (1, σ11) - derivation of the ring A;

In general,

8) For each n = 1, 2, . . . the mapping defined by

γn := σ12 ◦ σn−1

11

is a (σnn, σn+1n+1) - derivation of the ring A, that is, the following formula

γn(ab) = σnn(a)γn(b) + γn(a)σn+1n+1(b) (a, b ∈ A) (2.15)

holds for each n = 0, 1, 2, . . ..

Note that, by virtue of the relations (2.14), the mapping γn can be also expressed
as

γn = σ12 ◦ σn−1 n−1 (n = 1, 2, . . .),

and that the formula (2.15) can be deduced via (2.2) by using the fact that σnn for
each n = 0, 1, 2, . . . is a ring-homomorphism. Namely, we have

γn(ab) = σ12(σn−1 n−1(ab)) = σ12(σn−1n−1(a)σn−1n−1(b)) =

= σ11(σn−1n−1(a))σ12(σn−1n−1(b)) + σ12(σn−1 n−1(a))σ22(σn−1n−1(b)),

and since σ22 = σ2
11, so that σ22 ◦ σn−1n−1 = σn+1n+1, (2.15) follows at once.

In what follows we require additional conditions on the mappings σnm (n,m =
0, 1, . . .).

(L) The mappings σ1j (j = 1, 2, . . .) are A - independent from the left, that
means that if

∞
∑

j=1

cjσ1j(a) = 0 (2.16)

for all a ∈ A, then cj = 0 (j = 1, 2, . . .).

Note that, due to σ1j(1) = 0 (j = 2, 3, . . .) and σ11(1) = 1 (cf. (iv1) and
(iv2) of (A)), from (2.16) for a = 1 it follows that c1 = 0. Therefore, without
loss of generality, it can be considered that j is changed beginning with 2 and so
on going almost everywhere over the set of integer numbers. Thus, the mappings
σ1j (j = 1, 2, . . .) are A-independent from the left if and only if the condition

∞
∑

j=2

cjσ1j(a) = 0 (∀a ∈ A)

implies cj = 0 (j = 2, 3, . . .).
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Similarly, the notion of A - independent from the right can be introduced for the
mappings σ1j (j = 1, 2, . . .). Namely, we say that the mappings σ1j (j = 1, 2, . . .)
are A-independent from the right if whenever from the condition

∞
∑

j=2

σ1j(a)cj = 0 (∀a ∈ A)

it follows cj = 0 (j = 2, 3, . . .).

An alternative of the assumption (L) is the following one.

(R) The mappings σ1j (j = 1, 2, . . .) are A-independent from the right.

Remark. The assumption of the A-independence (L) (respectively (R)) is satisfied
for instance if for the mappings σ1j (j = 1, 2, . . .) there exists a family of the elements
aj ∈ A (j = 1, 2, . . .) such that the elements σ1j(aj) (j = 1, 2, . . .) are not left (resp.
right) zero-divisors in A and σ1k(aj) = 0 for j 6= k (j, k = 1, 2, . . .). In the particular
case of an integral domain A it is sufficient to require that σ1j(aj) 6= 0 (j = 1, 2, . . .)
and σ1k(aj) = 0 for j 6= k (j, k = 1, 2, . . .).

The next assumption will be useful for our further discussion.

(C) There exists a positive integer r such that σ1j = 0 for j > r.

It turns out that the assumption (C) together with the assumption of the inde-
pendence (R) implies the following property.

Proposition 7. σkj = 0 (k = 1, . . . , r; j = r + 1, r + 2, . . .).

Proof. For k = 1 the assertion is true via the assumption (C). For the other values
the assertion follows from the independence conditions given by the assumption (R).
This can be shown as follows. First we observe that (cf. (2.12))

σ1j(ab) =

j
∑

k=1

σ1k(a)σkj(b) (a, b ∈ A).

Then, since σ1j(ab) = 0 for j = r + 1, r + 2, . . . , we can write

j
∑

k=1

σ1k(a)σkj(b) = 0 (j = r + 1, r + 2, . . .).

For j = r + 1, we obtain
r

∑

k=1

σ1k(a)σkr+1(b) = 0

from which, by the assumption (R), we get

σ1r+1(b) = . . . = σrr+1(b) = 0 (∀b ∈ A),
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i.e. σkr+1 = 0 (k = 1, . . . , r).

The same can be concluded for the other values by similar arguments. 2

Further, we note the relations (cf. (iii) of (A))

σn+ms =
∑

k+j=s

σnk ◦ σmj =
∑

k+j=s

σmj ◦ σnk (s = n + m,n + m + 1, . . .), (2.17)

where k = n, n + 1, . . . . and j = m,m + 1, . . . ..

From Proposition 7 we have σrk = 0 for k = r + 1, r + 2, . . .. Hence, by applying
the relations (2.17) for n = r and m = j (j = 1, . . . , r), one has

σrr ◦ σ1j = σ1j ◦ σrr (j = 1, . . . , r), (2.18)

or, taking into account the relations (2.13),

σr
11 ◦ σ1j = σ1j ◦ σr

11 (j = 1, . . . , r).

Note that the relations (2.18) can be deduced also by observing that

σr+1r+j =
∑

k+l=r+j

σrk ◦ σ1l = σrr ◦ σ1j ,

σr+1r+j =
∑

k+l=r+j

σ1k ◦ σrl = σ1j ◦ σrr.

Next we discuss some special properties of the mappings σnm. Again, in virtue
of the condition (iii) of (A), we see

σrr+j−1 =
∑

k+l=r+j−1

σr−1k ◦σ1l = σr−1r−1 ◦σ1j +σr−1r ◦σ1j−1 +σr−1r+1 ◦σ1j−2 + · · ·

and since σrr+j−1 = 0 for j = 2, 3, . . . and also σr−1r+1 = σr−1r+2 = . . . = 0, it
follows the relations

0 = σr−1r−1 ◦ σ1j + σr−1r ◦ σ1j−1 (j = 2, 3, . . .). (2.19)

Similarly

σrr+k =
∑

s+t=r+k

σ1s ◦ σr−1t = σ1k+1 ◦ σr−1r−1 + σ1k ◦ σr−1r,

and hence
σ1k+1 ◦ σr−1r−1 + σ1k ◦ σr−1r = 0 (k = 1, 2, . . .) (2.20)

In virtue of the relations (2.19) and (2.20), we obtain

(σ1k ◦ σr−1r−1) ◦ σ1j = σ1k ◦ (σr−1r−1 ◦ σ1j) = −σ1k ◦ (σr−1r ◦ σ1j−1) =

= −(σ1k ◦ σr−1r) ◦ σ1j−1 = (σ1k+1 ◦ σr−1r−1) ◦ σ1j−1,
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i.e.

(σ1k ◦σr−1r−1)◦σ1j = (σ1k+1 ◦σr−1r−1)◦σ1j−1 (j = 2, 3, . . . ; k = 1, 2, . . .). (2.21)

In particular, for k = 1, the formula (2.21) becomes to be as follows

σrr ◦ σ1j = (σ12 ◦ σr−1r−1) ◦ σ1j−1 (j = 2, 3, . . .)

and thus, by the commutative relations (2.18), we have

σ1j ◦ σrr = (σ12 ◦ σr−1r−1) ◦ σ1j−1 (j = 2, 3, . . .).

Then, we can continue

σ1j ◦σ2
rr = (σ12 ◦σr−1r−1)◦(σ1j−1 ◦σrr) = (σ12 ◦σr−1r−1)◦ [(σ12 ◦σr−1r−1)◦σ1j−2] =

= (σ12 ◦ σr−1 r−1)
2 ◦ σ1j−2,

and, by further iteration, we obtain

σ1j ◦ σj−1
rr = (σ12 ◦ σr−1 r−1)

j−1 ◦ σ11 (j = 2, 3, . . .). (2.22)

Substituting in (2.22) j = r + 1 and taking into account that σ1r+1 = 0, we obtain

(σ12 ◦ σr−1r−1)
r ◦ σ11 = 0. (2.23)

Since, by the assumption (B), σ11 is an automorphism, from (2.23) it follows

(σ12 ◦ σr−1r−1)
r = 0.

Therefore γr = σ12 ◦ σr−1r−1 is a nilpotent mapping of index r.

In virtue of (2.22), we see that the mappings σ1j (j = 2, 3, . . .) can be expressed
by σ11 and σ12, namely

σ1j+1 = γj
r ◦ σ

−rj+1

11
(j = 1, 2, . . .).

In addition, we note that the mapping γ0 = σ12 ◦σ−1

11
commutates with σrr. In fact,

from (2.18), in particular, it follows

σrr ◦ σ12 = σ12 ◦ σrr,

from which, multiplying from the right by σ−1
11

, we have

σrr ◦ (σ12 ◦ σ−1

11
) = (σ12 ◦ σ−1

11
) ◦ (σr+1r+1 ◦ σ−1

11
)

or
σrr ◦ γ0 = γ0 ◦ σrr. (2.24)

Further, we change in the formula (2.22) the expression σ12 ◦σr−1 r−1 by γ0 ◦σrr,

and we get
σ1j ◦ σj−1

rr = (γ0 ◦ σrr)
j−1 ◦ σ11.
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This relation together with the commutative property (2.24) implies

σ1j ◦ σj−1
rr = (γj−1

0
◦ σ11) ◦ σj−1

rr .

Since σrr is an automorphism, we conclude

σ1j = γ
j−1

0
◦ σ11 (j = 2, 3, . . .). (2.25)

In particular, from (2.25) it follows that

γr
0 ◦ σ11 = σ1r+1 = 0,

that is γr
0 = 0. Moreover, if σ1r 6= 0, then γr−1

0
6= 0.

We formulate the obtained results as follows.

Theorem 8. Under the assumptions (A
′′

),(B),(C) and (R) the following assertions
hold.

1) The derivation γ0 is a nilpotent mapping of index r, that is, γr
0 = 0, and

γr−1

0
6= 0 whenever σ1r 6= 0;

2) γr = σ12 ◦ σr−1r−1 is also a nilpotent mapping of index r;

3) The mappings σ1j (j = 2, 3, . . .) are expressed by σ11 and σ12, and, moreover,
for them the relations (2.25) and the commutation relations (2.18) are held.

The author is indebted to Professor Yu. M. Ryabukhin for encouragement, useful
comments and suggestions.
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