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Abstract— The paper addresses the issue of comparing 
the reliability of two standard types of networks: serial-
parallel and parallel-serial. Four variants of dynamic 
mathematical models are analyzed depending on the lifetime 
cumulative distribution function of each units of the 
network, the non-random / random character of the number 
of units in each subnet and of the number of subnets. 
Sufficient conditions have been determined for serial-
parallel networks to be more reliable than parallel-serial 
networks. The main result is that these conditions do not 
imply the lifetime distribution of each unit but only the 
probabilistic distribution of the numbers of units and 
subsystems of the networks. 
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I. INTRODUCTION  
In the case of networks whose structure (topology) is 

a complex one, in many cases, the subnets that are part of 
them have a series-parallel or parallel-series structure. 
This means that when designing networks, not 
infrequently, we will need to we know, possibly, which 
of the mentioned sub-networks is preferable in terms of 
their reliability. 

Based on mathematical models in various hypostases 
of such subnets, we aim to find the most reliable subnet. 

 

II. SERIES-PARALLEL AND PARALLEL-SERIES 
NETWORKS IN VARIOUS HYPOSTASES 

When in our paper we talk about the reliability of 
series-parallel / parallel-series networks we consider 
dynamic mathematical models in various situations 
depending on the number of units in each subnet, the 
number of subnets, but also the lifetime distribution of 
each unit of network.  

The figure below shows how the two networks A and 
B look schematically. 

  Figure 1. Schematic representation of series-parallel / parallel-series networks  
We will consider, thus, that the network (regardless of 

its type, A or B) consists of M subnets, the subnet k 
consists of Nk units, k = 1,2, ..., M, and the lifetimes of all 
units are independent, identically distributed random 
variables (i.i.d.r.v.) with the cumulative distribution 
function (c.d.f.) F (x).  

Even if the numbers Nk, k = 1,2, ..., M,  or / and M are 
random, we consider that they are independent of the 
lifetimes of all units. 

Furthermore, the reliability of type A and B networks 
will be compared in the following variants. 

 
Variant 1. The number of units Nk in the subnet k, k 

= 1,2, ..., M is constant, the number of subnets being 
constant too. 

 
Variant 2. The number of units Nk,, k = 1,2, ..., M in 

the subnets k = 1,2, ..., M  are i.i.d.r.v. with 0-truncated 
Power Series Distribution (PSD) but the number of 
subnets being constant. 

  
Variant 3. The number Nk of units in the subnet k, k 

= 1,2, ..., M is constant, in addition, N1 = N2 = ... = NM = 
N,  and the number M of the subnets is 0 -truncated PSD 
r.v. 
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Variant 4. The numbers of units Nk,, k = 1,2, ..., M in 
the subnets k = 1,2, ..., M  are independent., identically, 
0-truncated PSD r.v., and the number M of subnets is 0-
truncated PSD r.v., independent of r.v. Nk, k = 1,2, ..., M. 

We recall that, according to [1], r.v. Z with values 
from the set {0,1, ..., n, ...} is a power series distributed 
(PSD) r.v. with parameter θ and power function  A(θ) 

= k≥0 a z θ z  if P (Z = z) = a z θ z /A(θ) ,  a z ≥0, where the 
power series is convergent with the convergence radius  τ ∊ (0,+∞). Shortly, Z ∊ PSD.  

The PSD used in our paper are 0-truncated ones, 
because the real networks consists from at least one unit. 
The following assertion assure us that the operation of 0-
truncations does not alter the initial quality of distribution 
to be of PSD class. 

 
Proposition 1 [2]. If Z ∊ PSD  with parameter θ and 

power series function  A(θ) = k≥0 a z θ z, then his 0-
truncation is a r.v. Z*∊ PSD  with parameter θ, θ∊ (0, τ), 
τ ∊ (0,+∞) and power series function  A*(θ) == k≥1 a z θ z 
= A(θ) – a0, i.e.,  P (Z = z) = a z θ z /A*(θ), a z ≥ 0, z=1,2, 
… . 

 
Example 1. The following Table 1, from [2], shows 

the form of PSD parameters of 0-truncated distributions 
of some classical discrete distributions as Bin(n; p), 
Geom(p), Poisson(λ), Log(p), NegBin(k; p), Pascal(k; p); 
marked by symbol " *", if their 0-truncation change form 
as a PSD. 

 
TABLE I. 0-TRUNCATED DISTRIBUTIONS OF SOME 

CLASSICAL DISCRETE DISTRIBUTIONS 
 

 
III. COMPARING THE RELIABILITY OF 

NETWORK OF TYPE A VS NETWORK OF TYPE B. 
We denote by RS-P (x) the reliability of the type A net-

work and by RP-S (x) the reliability of the type B network, 
by the reliability (also called the survival function) of a 

system understanding the function R (x) = 1-L (x), where 
L (x) is the lifetime c.d.f. of this system. 

The following two statements highlight the conditions 
under which the type A network is more reliable than the 
type B network. 

 
Proposition 2. For any mathematical model (in 

variants 1-4), the property of one network to be more 
reliable than the other network does not depend on 
lifetime c.d.f. F (x) of each unit of the network.  

 
Proposition 3. For any mathematical model (in 

variants 1-4), the series-parallel network is more reliable 
than the parallel-series network, i.e., RS-P (x)> RP-S (x) as 
soon as P(N1.>M)=…=P(NM.>M)=1.  

 
In other words, it is sufficient that P(N1.>M)= …= 

=P(NM.>M)=1, which in the case of variant 1 this means 
that min (N1 , N2,…,.NM) > M, to guarantee that RS-P (x)> 
RP-S (x). Otherwise, this means that not always RS-P (x)> 
RP-S (x). Moreover, Proposition 2 shows that this property 
takes place regardless of the lifetime c.d.f. F (x) of each 
unit in the network. So, to illustrate graphically this  
property is sufficient to take the uniform distribution on 
[0,1] as the c.d.f. F (x), i.e. F(x)=xI[0,1](x)+I(1,+∞), where 
ID (x)=1 if x ∊ D , otherwise  ID (x)=0.  

For the mathematical models in variants 1-2, our 
statements being a consequence of the results of the [3], 
we will bring illustrative examples for variants 3-4.  

 
Example 2. We consider the networks of type A and 

B according to the mathematical model from variant 3, 
i.e., the number of units in each subnet is constant and 
equal to the same number N, while the number of subnets 
is a r.v. M ∊ PSD with parameter ω and power series 
function B(ω) with radius of convergence r ∊ (0, +∞) .  

As a consequence of Proposition 2, we will consider 
that lifetime c.d.f. of each unit is given by  F (x) = 
=xI[0,1](x)+I(1,+∞). Under these conditions it is valid 

 
Proposition 4. Reliability of type A and B networks in 

variant 3, when lifetime c.d.f. F (x)=xI[0,1](x) +I(1,+∞) are 
given respectively by the functions  

Rs-p (x)= [B(ω(1-xN)) / B(ω)] I[0,1](x) and   
RP-S (x)=[1- B(ω(1-(1-x)N)) / B(ω)] I[0,1](x),  
where B(ω) is a power series function of r.v. M ∊ PSD 

with parameter ω.   
 
So, to exemplify, we will take a few cases when  

M～Bin*(n; p), i.e. ω=p/(1-p) and B(ω)=(1+ ω)n-1. 
 
N=5, n=3, p=1/2, i.e., ω=1 and P(N>M)=1. Then   

RS-P (x)={[(1+(1-x5))3-1] / (23-1)} I[0,1](x)  and 
RP-S (x)={[(1+(1-(1-x)5))3-1] / (23-1)} I[0,1](x). 

 



21-22 October, 2021 
Chisinau, Republic of Moldova Computer Science 

The 11th International Conference on 
Electronics, Communications and Computing 

https://doi.org/10.52326/ic-ecco.2021/CS.02 
  

 

172 
 

Their graphical representation below (Fig. 2) shows 
that  

RS-P (x) > RP-S (x), which confirms the statement of 
Proposition 3. 

  Figure 2. 
 
N=5, n=34, p=1/2, i.e., ω=1 and P(N>M)<1. Then RS-

P (x)={[(1+(1-x5))34-1] / (234-1)} I[0,1](x)  and 
RP-S (x)={[(1+(1-(1-x)5)34 -1] / (234-1)} I[0,1](x). 
Their graphical representation below (Fig. 3) shows 

that inequality RS-P (x) > RP-S (x) is not sure for all x, 
which also confirms conclusions from the Proposition 3. 

 

 Figure 3. 
 
Moreover, in the following case, RS-P (x) < RP-S (x), 

when 
P(N >M) <1.  
N=5, n=100, p=1/2, i.e., ω=1. So, P(N>M)<1.  Then             
RS-P (x)={[(1+(1-x5))100-1] / (2100-1)} I[0,1](x)  and 
RP-S (x)={[(1+(1-(1-x)5)100 -1] / (2100-1)} I[0,1](x). 
From the graphic representation below (Fig. 4) we see 

that, indeed, RS-P (x) < RP-S (x). This also confirms 
conclusions from the Proposition 3. 
 

 Figure 4. 
 

Example 3. Now, let’s consider the networks of type 
A and B according to the mathematical models  which 
correspond to variant 4, i.e., the numbers Ni  of units in 
each subnet, i=1, 2, … are i.i.d.r.v. of 0-truncated PSD 
type with the parameter θ and power function  A(θ)  with 
radius of convergence τ ∊ (0, +∞), while the number of 
subnets M is a r.v. independent of numbers Ni , i=1, 2, … 
and M ∊ PSD with the parameter ω and power series 
function B(ω) with radius of convergence r ∊ (0, + +∞) . 

Also, as a consequence of Proposition 2, we will 
consider that lifetime c.d.f. of each unit is given by  
F (x) = =xI[0,1](x) )+I(1,+∞). Under these conditions it is 
valid 

 
Proposition 5. Reliability of type A and B networks in 

variant 4, when lifetime c.d.f. F (x)=xI[0,1](x) )+I(1,+∞) are 
given respectively by the functions  

RS-P (x)= [B(ω(1- A(θx) / A(θ) )) / B(ω)] I[0,1](x) and   
RP-S (x)=[1- B(ω(1- A(θ(1-x)/  A(θ) ) )) / B(ω)] 

I[0,1](x),  
where  A(θ)  and B(ω) are the power series functions 

of r.v. Ni , i=1, 2, …,  and M, with parameters θ  and ω, 
respectively.  

 
Now, we consider the following cases.  
R.v. Ni ～Pascal*(k;p), i=1, 2, …,M,  k=5, p=1/2 and 

M～Bin*(n; q), n=4, q=1/2.  So, from the Table 1, we 
deduce that θ =1/2 for p=1/2  and ω=1 for q=1/2,  A(θ) = 
(θ/1- θ)5=1 for θ =1/2 and  B(ω)=(1+ ω)4-1=24 -1 for ω 
=1   and P(Ni >M)=1, i=1, 2, …, M. This implies that for 
x ∊[0,1]   

RS-P (x)={[2-(x/(2-x))5]4-1}/(24-1) and 
RP-S (x)=1-{[2-((1-x)/(1+x))5]4-1}/(24-1). 
The graphical representation below (Fig. 5) shows 

that  
RS-P (x) > RP-S (x), which confirms the statement of 

Proposition 3. 

 Figure 5. 
 
R.v. Ni ～Bin*(n; q), n=4,q=1/2, i=1, 2, …, and M～

Pascal*(k;p), k=5, p=1/2.  So , from the Table 1, we 
deduce that θ =1 for p=1/2  and ω=1/2 for q=1/2,  A(θ) = 
(1+θ)4-1=24 -1 for θ =1 and  B(ω)=( ω /(1-ω))5=1 for ω 
=1/2   and P(Ni >M)=0, i=1, 2, …, M. This implies that  
for x ∊[0,1] 
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RS-P (x)={[24-(1+x)4] / [2(24-1)- (24-(1+x)4)]}5 and 
RP-S (x)=1-{[24-(2-x)4]/[2(24-1)- (24-(24-(2-x)4)}5. 
 
The graphical representation below (Fig. 6) shows 

that  
RS-P (x) < RP-S (x) because P(Ni >M)=0, i=1, 2, …, M., 

which also confirms consequences from the statement of 
Proposition 3.  

 

 Figure 6. 
 
 
Finally, also, if there is at least one i for which P(Ni 

>M)<1, do we have that inequality RS-P (x) > RP-S (x)  it 
becomes uncertain. Really 

R.v. Ni ～Bin*(n; q), n=20, q=1/2, i=1, 2, …, and M
～Pascal*(k;p), k=100, p=1/2.  So , from the Table 1, we 
deduce that θ =1 for p=1/2  and ω=1/2 for q=1/2,  A(θ) = 
(1+θ)20-1=220 -1 for θ =1 and  B(ω)=( ω /(1-ω))100=1 for 
ω =1/2   and P(Ni >M)<1, i=1, 2, …, M. This implies that 
for x ∊ [0,1] 
RS-P (x)={[220-(1+x)20] / [2(220-1)- (220-(1+x)20)]}100 and 
RP-S (x)=1-{[220-(2-x)20]/[2(220-1)- (220-(220-(2-x)20)}100 

(Fig. 7). 
 

 Figure 7. 
 
Conclusions. Comparing the reliability of the serial-

parallel type networks with the reliability of the parallel-
serial type networks represented in fig. 1 we have shown 
 the following.  
      Due to the specific / characteristic properties of c.d.f. 
this comparison does not depend on lifetime c.d.f. of the 
units that are part of the network. 

As a result, we can make the proposed comparison, 
taking as lifetime c.d.f. F (x) the uniform distribution on 
the segment [0,1]. 

We also showed that, finally, in any of the 4 dynamic 
mathematical models (variants 1-4) the parallel series 
network is more reliable than the parallel series network 
as soon as the probability that the number of units in each 
subnet will be greater than the number of subnets is equal 
to 1. Otherwise, the comparison is not unambiguous. 
  This last statement is also confirmed by graphic 
methods. 
     Moreover, in the case of mathematical models 3 and 4, 
the calculation formulas for reliability / survival function 
are brought. 
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