
Technical Scientific Conference of Undergraduate, Master, PhD students, Technical University of Moldova

Chisinau, Republic of Moldova, March 29-31, 2022, Vol. I

- 313 -

DOMAIN SPECIFIC LANGUAGE FOR LINDENMAYER SYSTEMS

Patricia CAPITAN*, Marius BADRAJAN, Victor FLORESCU, Mihai MUȘTUC

Department of Software Engineering and Automatics, FAF-201, Faculty of Computers, Informatics and
Microelectronics, Technical University of Moldova, Chișinău, Moldova

*Corresponding author: Patricia Capitan, patricia.capitan@isa.utm.md

Abstract. The article addresses the process of creation of a Domain-Specific Language (DSL) that
will generate and design fractals, fractal plants, and architectural geometries of different colors,
dimensions, using Lindenmayer systems, otherwise known as L-systems. L-systems can be used as a
powerful design tool. Minimal inputs are able to create a spatially complex output. Since L-system is
a topic of interest for people like botanists, biologists, architects, etc., these not necessarily
possessing advanced programming skills, a DSL to graphically represent patterns created using an
L-system would be quite of use for their works and researches.

Keywords: fractals, fractal plants, DSL, L-system, design tool

 Introduction
 A domain-specific language (DSL) is a computer language that is specific to a particular
software domain. There are many different DSLs, ranging from the languages widely used for
common domain names to the languages used by some software [1].
 L-systems were first used to simulate the development of basic multicellular organisms in
terms of cell division, growth, and death. The purpose of modular modeling is to explain the overall
development of a plant, and in particular the appearance of plant morphology, as the integration of
individual unit development. Now they are used to generate geometric structures (fractal-like
objects). L-systems can describe the structure of a fractal as an axiom, an alphabet of symbols and a
set of productions using those symbols. Each symbol in the grammar is given a visual interpretation
so an arbitrary string created by an L-system can be converted to a picture. The string after each
iteration gives a fractal-like form when each symbol is given a visual representation [2].
 There are very few tools targeted specifically towards representing L-system patterns, let
alone the logic behind it and the implementation. A DSL would solve this issue and help people native
with this domain during their working process of modeling the growth of biological systems.
Moreover, for architects it would represent a powerful design tool. In regards to programming, the
DSL might turn out handy and convenient for students who are interested in studying fractal-like
objects.

The paper describes the process of generating a domain-specific language, whose objectives
are the following:

- to offer better understanding of the performance and to document the requirements and
behavior of L-systems;

- to develop a tool which will help people native with this domain in their works;
- to generate graphic images of objects created using L-systems, such as fractals, etc.;
- to solve the issue representing the lack of graphic tools for L-systems.

Language Design
The generated domain-specific language is based on a sequential mathematical model of

computation, specifically a finite automaton that will operate on predefined grammar rules for
different types of graphic outputs. In the frontend of programming language compilers, finite
automata are frequently utilized [3]. From a sequence of characters, the lexical analyzer generates a
sequence of language tokens (such as reserved words, literals, and identifiers), which the parser
utilizes to generate a syntax tree. The lexical analyzer and parser handle the regular and context-free
aspects of the computer language's grammar.

Conferinţa Tehnico-Ştiinţifică a Studenţilor, Masteranzilor și Doctoranzilor, Universitatea Tehnică a Moldovei

Chișinău, Republica Moldova, 29-31 Martie 2022, Vol. I

- 314 -

The DSL holds 3 data types: integer, character, and string, and one composite data type -
functions, which represent the main way of generating a graphical output. Strings literals have some
restrictions on their definition: they cannot contain symbols other than those accepted by the function
type, meaning for certain graphical designs there are certain rules for characters and symbols to be
followed. Functions save more data about L-system items. To keep the DSL simple, the inner
implementation of the functions is hidden from the user.

The criterion for any source code is that a set of statements separated by ';' is expected. A
variable definition or a function call can be used in the statement. A variable name, assignment
symbol, and a call to a function that returns an object are all required for the variable definition
command. In terms of syntax, a function call offers more options. Arguments should be enclosed in
braces and separated by a comma if a function requires them. For its arguments, each function has
some specific constraints or limitations.

The DSL works as follows: the code is separated into tokens, which are then processed by a
parser to locate parser rule matches. Rules and tokens are processed by ANTLR to generate lexer,
parser, and listener files. The program executes each command one by one, one at a time, from top to
bottom. The program will provide an appropriate error notice if there is an unknown syntax or
semantic validation issue.

Grammar

G = (VN, VT, S, P):

VN = { <program>, <ls freestyle>, <ls tree>, <ls dragon>, <define>,
<type>, <alphalower>, <identifier>, <value>,
<parameters>, <axiom>, <applies>, <angle>, <length>, <rules>,
<start>, <short>, <long>, <directions>,
<num>,
<rule>, <first>, <second>,
<for>, <A>, , <C>, <X>, <Y>,
<if>, <expression>, <statement> }

VT = { [a-z], [A-Z], [0-9], [+ | -], ls freestyle(), ls tree(), ls dragon(), int, char, string, _, ”,
;, for(;;), if(){}else{}, [_ | ++ | -- | = | < | > | <= | >= | == | !=] }

S = <program>

P = { <program> → <ls freestyle>; | <ls tree>; | <ls dragon>; | <define>; | <for>; | <if>;

<define> → <type> <identifier> = <value> | <type> <identifier>
<type> → int | char | string
<identifier> → <alphalower> | <alphalower><num> | <alphalower>_<alphalower> <alphalower>
→ a|...|z | <alphalower> a|...|z
<value> → <num> | <alphalower>

<ls freestyle> → ls freestyle(<parameters>)
<parameters> → ”<axiom>”, <applies>, <angle>, <length>, {<rules>}
<axiom> → <start>
<start> → <short> | <long>
<short> → [a-z] | [A-Z] | [0-9]
<long> → <short> | <short><long> | <long><directions> | <directions><long> |
<long><directions><long>
<directions> → [+ | −] | [+ | −] <directions>
<applies> → [1-9] | [1-9]<num>
<num> → [0-9] | [0-9]<num>

Technical Scientific Conference of Undergraduate, Master, PhD students, Technical University of Moldova

Chisinau, Republic of Moldova, March 29-31, 2022, Vol. I

- 315 -

<angle> → [0-9] | [1-9][0-9] | [1-2][0-9][0-9] | 3[0-5][0-9] | 360
<length> → [0-9] | [1-9][0-9] | 100

<rules> → <rule> | <rule>,<rules>
<rule> → ”<first>”:”<second>”
<first> → <short>
<second> → <long> | [<second>] | <long>[<second>] | [<second>]<long> |
<long>[<second>]<long>

<ls tree> → ls tree(<num>)

<ls dragon> → ls dragon(<num>)

<for> → for(<A>;;<C>){}

<A> → <X>=<Y>
 → <X><<Y> | <X>><Y> | <X><=<Y> | <X>>=<Y>
<C> → <X>++ | <X>--
<X> → [A-Z] | [a-z] | [A-Z]<X> | [a-z]<X> | _<X> | <X><num> | <X><num><X>
<Y> → <num>

<if> → if(<expression>){} | if(<expression>){};else{}
<expression> → <identifier>[< | > | == | <= | >= | !=]<statement>
<statement> → <statement> | <num> | ”<X>” | ’<short>’
}

Grammar Description
- define variables:

<type> - data type of variable
<identifier> - name of variable

- ls freestyle: function to design plants using L-systems, according to user's personal
preferences

<axiom> - The starting string of the L-System.
<applies> - The number of times the rules are applied to the string.
<angle> - The angle to apply for the turning commands, in degrees.
<length> - The length of each f (move) command, in pixels.
<rules> - A dictionary of character and substitution strings.

Supported commands:
 f : move forward

+ : turn angle right
- : turn angle left
[: start branch
] : end branch

- ls tree/ls dragon: functions that generate 2 examples of L-systems designs
<num> - The number of recursions.

- for statement:
<A> - Initialization
 - Condition
<C> - Increment/Decrement

- if statement:
<expression> - Condition

Conferinţa Tehnico-Ştiinţifică a Studenţilor, Masteranzilor și Doctoranzilor, Universitatea Tehnică a Moldovei

Chișinău, Republica Moldova, 29-31 Martie 2022, Vol. I

- 316 -

Syntax Example and Parsing Tree
Syntax: ls freestyle(axiom, applies, angle, length, rules);
Input: ls freestyle(”X”, 6, 25, 10,{”X”: ”f−[[X]+X]+f[+fX]−X”, ”f”: ”ff”});

Figure 1. Parse Tree Example

Conclusion

 A domain-specific language designed specifically towards representing graphical outputs
created using L-systems would result in a powerful tool for people interested in this scientific sphere.
Further, using the generated DSL would be a great way to learn the behavioral features of L-systems
and how these work in different aspects of graphics. Students, along with others possessing little to
no programming and coding experience, may use this tool in their personal works and/or for research
purposes. The DSL would bring recognition to L-systems, their representation and relevance in
diverse domains.

References
1. Domain-specific language [online]. [accessed on February 27, 2022]. Available at:

https://en.wikipedia.org/wiki/Domain-specific_language
2. PRUSINKIEWICZ, P., HANAN, J., HAMMEL, M., MECH, R. L-systems: from the Theory to Visual

Models of Plants [online]. [accessed on February 27, 2022]. Available at:
http://algorithmicbotany.org/papers/sigcourse.2003/2-1-lsystems.pdf

3. Finite-state machine [online]. [accessed on February 27, 2022]. Available at:
https://en.wikipedia.org/wiki/Finite-state_machine

