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Abstract—The problem of controlling a compound 

Poisson process until it leaves an interval is considered. In 

this paper, instead of choosing the density function of the 

jumps and trying to find the corresponding value function, 

from which the optimal control follows at once, we consider 

the inverse problem: we fix the value of the value function 

and we look for admissible density functions for the jumps. 
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I. INTRODUCTION 

In [1], the author considered the controlled jump-

diffusion process {Xu(t), t ≥ 0} defined by 

 

 
 

where µ ∈  and σ > 0 are constants, b(·) ≠ 0, u(·) is the 

control variable, {B(t), t ≥ 0} is a standard Brownian 

motion and {N(t), t ≥ 0} is a Poisson process with rate λ. 

Moreover, {B(t), t ≥ 0} and {N(t), t ≥ 0} are independent, 

and the random variables Y1 , Y2 , … are independent and 

identically distributed. The aim was to find the control 

that minimizes the expected value of the cost criterion 

 

 

where θ is a real constant, q(·) > 0, K(·) is a general 

termination cost function and the final time T(x) is a 

random variable (known as a first-passage time in 

probability theory) defined by 

T(x) = inf{t ≥ 0 : Xu (t)  (a, b) | Xu (0) = x},                 
(3) 

where x ∈  [a, b]. Explicit solutions to particular problems 

were obtained when Y1, Y2, ... are exponentially 

distributed, which implies that the random jumps are 

always positive, and we assume that the ratio b
2
(x)/q(x) is 

a (positive) constant: 

 

(4) 

This type of stochastic control problem, in which the final 

time is a first-passage time, is called a homing problem; 

see Whittle [2] and/or Whittle [3]. In the case when the 

parameter θ is positive (respectively, negative), the 

optimizer must try to minimize (respectively, maximize) 

the time spent by the controlled process in the 

continuation region (a, b), taking the quadratic control 

costs q[Xu (t)] u
2
[Xu(t)]/2 and the termination cost 

K[Xu(T(x))] into account. 

   

In this paper, we set σ = 0. It follows that {Xu (t), t ≥ 0} 

becomes a controlled compound Poisson process (with 

drift µ); see, for example, Ross [4]. Moreover, we define 

T(x) = inf{t ≥ 0 : Xu(t) ≥ 1 | Xu (0) = x ≤ 1}.              (5) 

 

That is, the continuation region is the interval (−∞,1). 

 

II. OPTIMAL CONTROL 

Let fY (y) be the common density function of the random 

variables Y1 ,Y2 ,... The following result is an extension of 

Proposition 2.1 in [1]. 

 

Remark. The function fY (y) can involve the Dirac delta 

function. That is, Y can be a discrete or a mixed type 

random variable. 
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Proposition 2.1. The value function 

 V(x) := inf E[J(x)]   (6) 

u[Xu(t)] 

0 ≤ t ≤ T(x) 

satisfies the first-order, non-linear integro-differential 

equation 

(7) 

for x < 1. Moreover, this equation is subject to the 

boundary condition 

 V (x) = K (x)   if x ≥ 1.                           (8) 

Proof. Bellman’s principle of optimality implies that 

       (9) 

Moreover, we deduce from the properties of the Poisson 

distribution that 

 P[N(∆t) = 0] = e
−λ∆t 

= 1 − λ∆t + o(∆t)              (10) 

and 

        P[N(∆t) = 1] = λ∆t e
−λ∆t 

= λ∆t + o(∆t).              

(11) 

Hence, we can write that 

 

Next, assuming that the function V(x) is differentiable 

with respect to x, Taylor’s formula yields that 

 

 
and 

 

 

It follows, substituting (13) and (14) into Eq. (9), that 
 

                   (15) 

Dividing each side of Eq. (15) by ∆t and letting ∆t de-

crease to zero, we obtain the dynamic programming 

equation 

 

 

From the above equation, we deduce that the optimal 

control u∗(x) can be expressed in terms of the value func-

tion V(x): 

   (17) 
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for x < 1. Equation (7) is obtained by replacing this ex-

pression for u∗(x) into Eq. (16) and by noticing that we 

can write 

     (18) 

Finally, because the jumps are strictly positive, the con-

trolled process {Xu (t), t ≥ 0} cannot be smaller than the 

endpoint a of the interval [a, b]. However, it can cross the 

boundary x = b. Hence, we obtain the boundary condition 

in Eq. (8).   

 

      Now, in this paper, instead of choosing the density 

function fY (y) and trying to find the corresponding value 

function V(x) (and hence the optimal control from (17)), 

we consider the inverse problem: we fix the value of V(x) 

and we look for admissible density functions fY (y). 

 

     First, assume that the value function V(x) is a constant 

V0 in the interval (−∞,1) (so that u∗(x) ≡ 0). Then, we 

deduce from (7) that we must have 

 

 (19) 

If the function K(x) is also equal to the constant V0, the 

above equation reduces to 

 

 
(20) 

Thus, this solution is valid for any (non-defective) density 

function fY (y) if and only if θ = 0. 

Remark. When θ = 0 and K(x) is also equal to V0, the 

optimal control is trivially identical to zero. However, 

when K(x) ≡ K0 ≠ V0, Eq. (19) becomes 

   0 = θ − λV0 + λ {V0 FY (1 − x) + K0 [1 − FY (1 − x)]}, (21) 

where FY (·) denotes the common cumulative distribution 

function of the random variables Y1 ,Y2 , ... Then, the 

function FY (1 − x) must not depend on x. This is true if 

the jumps are always negative, so that FY (y) = 1 for any y 

≥ 0. It follows that the solution is valid again if and only 

if θ = 0. 

Next, we look for value functions V(x) that are affine 

functions of x: 

𝑉(𝑥) = 𝑐1𝑥 + 𝑐0, (22) 

where c1 ≠ 0, so that 

𝑢 ∗ (𝑥)  = −𝑐1

𝑏(𝑥)

𝑞(𝑥)
. (23) 

Remark. We assumed that the ratio b
2
(x)/2q(x) is a 

positive constant κ. However, the ratio b(x)/q(x) is not 

necessarily a constant. Hence, the optimal control is not 

necessarily a constant either. 

 

Substituting the function defined in (22) into the integro-

differential equation (7), we obtain that 

 

 

The simplest case is when we choose K(x) = c1 x + c0 for 

any x ≥ 1. Then, the above equation becomes 

(25) 

Thus, assuming that E[Y] exists (and is finite), we deduce 

that the solution is valid for any random variable Y if and 

only if the constant c1 is given by 

 

 
(26) 

whereas the constant c0 is arbitrary. The parameter θ 

should be such that the term in the square root is non-

negative. 

 

    In the special case when E[Y] = 0, Eq. (26) simplifies 

to 

 

     (27) 

which reduces further to c1 = ± (θ/κ)
1/2

 when µ is equal to 

zero as well. 
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Remark. When θ is positive, the value function V(x) must 

also be positive. Therefore, the constant c1 must be 

chosen appropriately. 

Finally, when K(x) ≡ 0, Eq. (24) becomes 

(28) 

As in the case when V(x) ≡ V0, we would like the 

distribution function FY (1 − x) to be independent of x. 

We can again assume that the jumps are always negative, 

which implies that FY (1 − x) ≡ 1 for x < 1. It follows that 

the constant c1 must satisfy the equation 

 

 

 

 

 

 

 

(19) 

Hence, we retrieve the equation for c1 in (26). However, 

because we assumed that Y < 0, we must impose the 

condition µ > 0, otherwise T(x) will be equal to infinity. 

III. CONCLUSION 

In this paper, we considered an inverse LQG homing 

problem for one-dimensional jump-diffusion processes. 

Whereas in a previous paper the jump-size distribution 

was fixed and the aim was to solve the dynamic pro-

gramming equation (and hence obtaining the optimal 

control), here we tried to find admissible density func-

tions for the jumps when the form of the value function 

V(x) is chosen. 

We were able to obtain explicit solutions to our prob-

lem in the case when V(x) is a constant or an affine func-

tion of x. We could try to generalize our results to a poly-

nomial function. 

Finally, either this problem or the original one (with 

the constant σ > 0) could be considered in two or more 

dimensions. 
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