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Abstract. In this paper, various solutions of the stationary Navier-Stokes equations, which 
describe the planar flow of an incompressible liquid (or gas), are determined, i.e., solutions 
containing the components of the velocity of flow - the functions u, v and the created 
pressure - P. The paper contains three proven theorems, as well as various examples and 
particular examined cases. Applying Theorem 1, we can find various solutions, where the 
velocity components represent the imaginary and real parts of a differentiable function of a 
complex variable. Theorem 2 allows us to determine solutions, where the velocity 
components are expressed by the partial derivatives of the solutions of Laplace's equation of 
a special form. It is to be mentioned that these theorems give us solutions that do not depend 
on the viscosity parameter λ. In theorem 3, an original method for obtaining a series of 
solutions of the Navier-Stokes equations is presented, in which the viscosity coefficient λ 
participates explicitly; these solutions cannot be obtained by applying Theorems 1 or 2. The 
paper contains a large number of particular cases examined and examples of exact 
determined solutions. 

 

Keywords: stationary two-dimensional Navier-Stokes equations, system of equations with partial 
derivatives, exact solutions, method of separation of variables, viscosity, pressure, 
velocity of plane flow of a liquid or gas. 

 

Rezumat. În această lucrare se determină diverse soluții ale ecuațiilor staționare Navier-
Stokes, care descriu curgerea plană a unui lichid (sau gaz) incompresibil, și anume soluții ce 
conțin componentele vitezei fluxului de curgere - funcțiile u, v și presiunea creată – P. 
Lucrarea de față conține trei teoreme demonstrate și diverse exemple și cazuri particulare 
examinate. Aplicând teorema 1, putem afla diverse soluții, în care componentele vitezei 
reprezintă partea imaginară și cea reală a unei funcții diferențiabile de variabilă complexă. 
Teorema 2 ne permite să determinăm soluții, în care componentele vitezei sunt exprimate 
prin derivatele parțiale ale soluțiilor ecuației lui Laplace de o formă specială. Menționăm, că 
aceste teoreme ne oferă soluții ce nu depind de parametrul vâscozității λ. În teorema 3 este 
expusă o metodă originală de obținere a unui șir de soluții ale ecuațiilor Navier-Stokes, în 
care participă în mod explicit coeficientul vâscozității λ; aceste soluții nu pot fi obținute 
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aplicând teoremele 1 sau 2. Lucrarea conține un număr mare de cazuri particulare examinate 
și exemple de soluții exacte determinate. 

 

Cuvinte cheie: ecuații staționare bidimensionale Navier-Stokes, sistem de ecuații cu derivate 
parțiale, soluții exacte, metoda separării variabilelor, vâscozitate, presiune, viteza 
fluxului de curgere plană a unui lichid sau gaz. 

 

1. Introduction 

In the present paper, the Navier-Stokes equations are studied in the two-dimensional 
(2D) case. In this case the Navier-Stokes equations represent a system containing three partial 
differential equations with three unknown functions. 

Until today, the examined problem has not been definitively solved even in the case 
of stationary equations, that is, equations that describe the processes of the planar flow of a 
liquid or gas that does not vary in time. 

The complexity of the problem lies in the fact that the first two equations in the system 
are non-linear. 

A method is not developed that would allow us to determine all the solutions of this 
system. Determining the solutions of the system of Navier-Stokes equations is an important 
mathematical problem and has various applications in fluid and gas mechanics. 

The following system of partial differential equations is examined in this paper: 
 

 

⎩
⎪
⎨

⎪
⎧
𝑃𝑃𝑥𝑥
𝜇𝜇

+ 𝑢𝑢𝑢𝑢𝑥𝑥 + 𝑣𝑣𝑢𝑢𝑦𝑦 = 𝜆𝜆(𝑢𝑢𝑥𝑥𝑥𝑥 + 𝑢𝑢𝑦𝑦𝑦𝑦) + 𝐹𝐹𝑥𝑥
𝑃𝑃𝑦𝑦
𝜇𝜇

+ 𝑢𝑢𝑣𝑣𝑥𝑥 + 𝑣𝑣𝑣𝑣𝑦𝑦 = 𝜆𝜆(𝑣𝑣𝑥𝑥𝑥𝑥 + 𝑣𝑣𝑦𝑦𝑦𝑦) + 𝐹𝐹𝑦𝑦
𝑢𝑢𝑥𝑥 + 𝑣𝑣𝑦𝑦 = 0

   (1) 

 

where:  𝑥𝑥, 𝑦𝑦 ∈ 𝑅𝑅;  𝑃𝑃 = 𝑃𝑃(𝑥𝑥, 𝑦𝑦);𝐹𝐹 = 𝐹𝐹(𝑥𝑥; 𝑦𝑦);  𝑢𝑢 = 𝑢𝑢(𝑥𝑥,𝑦𝑦),𝑣𝑣 = 𝑣𝑣(𝑥𝑥, 𝑦𝑦);  𝑢𝑢𝑥𝑥 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 . 

System (1) describes the stationary processes of planar flow of an incompressible 
liquid or gas. Regarding the derivation of the equations of system (1) and the meaning of the 
physical processes described by this system, consult the works [1 - 3]. 

The unknowns of system (1) are the following three functions: P, which represents the 
created pressure; u and v, which represent the components of the flow velocity of a liquid or 
gas. 

The given external force is F and has a potential nature, that is, its components are 
equal to the partial derivatives of this force - Fx and Fy. The constants λ > 0 and µ > 0 are the 
parameters determined by the viscosity and density of the examined liquid (gas). We mention 

here, that the viscosity parameter has the form ,0, 0
0 >= c

R
c

e

λ where Re is the Reynolds 

number. 
Some exact solutions of the system (1) are obtained in the papers [4] - [7]. In the paper 

[8] a series of solutions of the examined system are indicated only for the components of the 
flow velocity, without determining the pressure. 

Suppose that in the plane connected domain D functions P(x, y), u(x, y), v(x, y) and F(x, 
y) admit partial derivatives continuous up to and including the second order, then the 
theorems 1-3 stated below is just. 
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2. Solutions, where the velocity components represent the imaginary part and the real 
part of a differentiable function of complex variable 
Theorem. 1. If f(z) is a function of complex variable z = x + iy, differentiable at any 

interior point (x; y) of domain D, then system (1) admits solutions of the following form in 
this domain: 

 

  𝑢𝑢 = 𝐼𝐼𝐼𝐼𝐼𝐼, 𝑣𝑣 = 𝑅𝑅𝑅𝑅𝑅𝑅;  𝑃𝑃 =  [𝐹𝐹 −  0,5( 𝑢𝑢2   +  𝑣𝑣2) + 𝐶𝐶]µ.    (2) 
 

where C is an arbitrary constant. 
 

Demonstration T. 1. System (1) is equivalent to the following system: 
 

        

⎩
⎪
⎨

⎪
⎧
𝑃𝑃𝑥𝑥
𝜇𝜇
− 𝐹𝐹𝑥𝑥 + 𝑢𝑢𝑢𝑢𝑥𝑥 + 𝑣𝑣𝑣𝑣𝑥𝑥 = 𝜆𝜆𝜆𝜆𝜆𝜆 − 𝑣𝑣�𝑢𝑢𝑦𝑦 − 𝑣𝑣𝑥𝑥�

𝑃𝑃𝑦𝑦
𝜇𝜇
− 𝐹𝐹𝑦𝑦 + 𝑢𝑢𝑢𝑢𝑦𝑦 + 𝑣𝑣𝑣𝑣𝑦𝑦 = 𝜆𝜆𝜆𝜆𝜆𝜆 + 𝑢𝑢�𝑢𝑢𝑦𝑦 − 𝑣𝑣𝑥𝑥�

𝑢𝑢𝑥𝑥 + 𝑣𝑣𝑦𝑦 = 0

          (3) 

 

where  𝛥𝛥𝛥𝛥 = 𝑢𝑢𝑥𝑥𝑥𝑥 + 𝑢𝑢𝑦𝑦𝑦𝑦,  𝛥𝛥𝛥𝛥 = 𝑣𝑣𝑥𝑥𝑥𝑥 + 𝑣𝑣𝑦𝑦𝑦𝑦. 
Noting that 𝐺𝐺 = 1

𝜇𝜇
 𝑃𝑃 − 𝐹𝐹 + 0,5(𝑢𝑢2 + 𝑣𝑣2) (4) 

Then from (3) results that �
𝐺𝐺𝑥𝑥 = 𝜆𝜆𝜆𝜆𝜆𝜆 − 𝑣𝑣(𝑢𝑢𝑦𝑦 − 𝑣𝑣𝑥𝑥)

𝐺𝐺𝑦𝑦 = 𝜆𝜆𝜆𝜆𝜆𝜆 + 𝑢𝑢�𝑢𝑢𝑦𝑦 − 𝑣𝑣𝑥𝑥�       
𝑢𝑢𝑥𝑥 + 𝑣𝑣𝑦𝑦 = 0

 (5) 

 

Thus, system (1) is equivalent to system (5). Since Gxy = Gyx we derive the first equation 
from (5) in relation to y, and the second in relation to x and equate the right sides of the 
obtained equations. As a result, we obtain the following equation for determining the 
functions u and v: 

 

 𝜆𝜆𝜆𝜆(𝑢𝑢𝑦𝑦 − 𝑣𝑣𝑥𝑥) − 𝑢𝑢(𝑢𝑢𝑦𝑦 − 𝑣𝑣𝑥𝑥)𝑥𝑥 − 𝑣𝑣(𝑢𝑢𝑦𝑦 − 𝑣𝑣𝑥𝑥)𝑦𝑦 = 0 (6) 
 

Besides this,  𝑢𝑢 and 𝑣𝑣  have to verify also the last equation from the system (5): 
 

 𝑢𝑢𝑥𝑥 + 𝑣𝑣𝑦𝑦 = 0. (7) 
 

Therefore, the functions u and v can be determined separately, independently of the 
pressure P, from the system, which consists of equations (6) and (7).  

May it be  𝑢𝑢 = 𝐼𝐼𝐼𝐼𝐼𝐼, 𝑣𝑣 = 𝑅𝑅𝑅𝑅𝑅𝑅,   𝑓𝑓 = 𝑣𝑣(𝑥𝑥;𝑦𝑦) + 𝑖𝑖𝑖𝑖(𝑥𝑥; 𝑦𝑦),  were f is a function of complex 
variable z = x + iy, differentiable at any interior point (x; y) of domain D. Then from Cauchy – 
Riemann conditions [9] we obtain: 

 

 �
𝑣𝑣𝑥𝑥 = 𝑢𝑢𝑦𝑦
𝑣𝑣𝑦𝑦 = −𝑢𝑢𝑥𝑥 ⇔ �

𝑢𝑢𝑦𝑦 − 𝑣𝑣𝑥𝑥 = 0
𝑢𝑢𝑥𝑥 + 𝑣𝑣𝑦𝑦 = 0  (8) 

 

The second equation in (8) coincides with (7), and from the first it follows that these 
functions verify equation (6). Since the functions u and v admit continuous derivatives up to 
the second order inclusive in D, they have continuous mixed derivatives in this domain and 

from (8) we deduce that they are solutions of Laplace's equation, meaning  𝛥𝛥𝛥𝛥 = 𝑢𝑢𝑥𝑥𝑥𝑥 + 𝑢𝑢𝑦𝑦𝑦𝑦 =

0,𝛥𝛥𝛥𝛥 = 0.  
Then from (5) we obtain that   �

𝐺𝐺𝑥𝑥 = 0
𝐺𝐺𝑦𝑦 = 0 ⇒ 𝐺𝐺(𝑥𝑥;𝑦𝑦) = 𝐶𝐶 − const.  

We substitute this result in (4) and express the pressure P.  T. 1. is proved. 



 Iu. Baltag 41 

Journal of Engineering Science  December, 2022, Vol. XXIX (4) 

Below we will give 2 examples of determining the solutions of system (1) according 
to theorem 1. 

 

Example 1. If  𝑓𝑓(𝑧𝑧) = 𝑒𝑒𝑧𝑧2 , then we obtain the following solutions of system (1):  
 

 �𝑢𝑢 = 𝑒𝑒𝑥𝑥2−𝑦𝑦2 𝑠𝑠𝑠𝑠𝑠𝑠( 2𝑥𝑥𝑥𝑥); 𝑣𝑣 = 𝑒𝑒𝑥𝑥2−𝑦𝑦2 𝑐𝑐𝑐𝑐𝑐𝑐( 2𝑥𝑥𝑥𝑥),
𝑃𝑃 = (𝐹𝐹 − 0,5𝑒𝑒2(𝑥𝑥2−𝑦𝑦2) + 𝐶𝐶)𝜇𝜇

 𝐷𝐷 = 𝑂𝑂𝑂𝑂𝑂𝑂.
 (9) 

 

Example 2.  If   f(z)  = C0(z-z0)-1 , then  
 

 �
𝑢𝑢 = 𝐶𝐶0(𝑦𝑦0−𝑦𝑦)

(𝑥𝑥−𝑥𝑥0)2+(𝑦𝑦−𝑦𝑦0)2
;   𝑣𝑣 = 𝐶𝐶0(𝑥𝑥−𝑥𝑥0)

(𝑥𝑥−𝑥𝑥0)2+(𝑦𝑦−𝑦𝑦0)2
,

𝑃𝑃 = [𝐹𝐹 − 0,5𝐶𝐶02

(𝑥𝑥−𝑥𝑥0)2+(𝑦𝑦−𝑦𝑦0)2
+ 𝐶𝐶]𝜇𝜇

𝐷𝐷 = 𝑂𝑂𝑂𝑂𝑂𝑂\{𝑀𝑀(𝑥𝑥0; 𝑦𝑦0)}.
 (10) 

 

In solutions (9) and (10) C and C0 are arbitrary constants. 

In [7] the solutions (10) with the constant C0 = 4(Re)-1  are obtained by a more 

complicated method. They represent the flow velocities of a liquid and the pressure in the 

vicinity of the orifice located at the point M(x0 ; y0). 

3. Solutions, where the velocity components are solutions of Laplace's equation of a 

special form 
Theorem. 2. If w(x; y) is a harmonic function, i.e., 𝛥𝛥𝛥𝛥 = 𝑤𝑤𝑥𝑥𝑥𝑥 + 𝑤𝑤𝑦𝑦𝑦𝑦 = 0, and has 

continuous partial derivatives up to the second order in the domain D, then system (1) admits 
the following solutions in this domain: 

 

 �
𝑢𝑢 = 𝑤𝑤𝑦𝑦 + 𝐶𝐶1𝑦𝑦 + 𝐶𝐶2𝑥𝑥 + 𝐶𝐶4; 𝑣𝑣 = −𝑤𝑤𝑥𝑥 + 𝐶𝐶3𝑥𝑥 − 𝐶𝐶2𝑦𝑦 + 𝐶𝐶5,                                                         
𝑃𝑃 = [𝐹𝐹 − 0,5(𝑢𝑢2 + 𝑣𝑣2) + (𝐶𝐶1 − 𝐶𝐶3)[𝑤𝑤 + 0,5(𝐶𝐶1𝑦𝑦2 − 𝐶𝐶3𝑥𝑥2) + 𝐶𝐶2𝑥𝑥𝑥𝑥 + 𝐶𝐶4𝑦𝑦 − 𝐶𝐶5𝑥𝑥) + 𝐶𝐶]𝜇𝜇

 (11) 
 

where Ck, k = 1,...,5  and  C  are arbitrary constants. 
 

Demonstration T. 2. Suppose that w(x; y) is a harmonic function and has inside the 
domain D continuous partial derivatives up to and including the second order. And let the 
functions u and v have the form in (11). Then  𝑢𝑢𝑥𝑥 + 𝑣𝑣𝑦𝑦 = 0;𝑢𝑢𝑦𝑦 − 𝑣𝑣𝑥𝑥 = 𝐶𝐶1 − 𝐶𝐶3. 
From here it follows that these functions verify equations (6) and (7), so they are solutions of 

system (1). It remains to find out the pressure. In this case we also have, that  𝛥𝛥𝛥𝛥 = 0, 𝛥𝛥𝛥𝛥 =
0.  
From (5) we obtain: 

 

�
𝐺𝐺𝑥𝑥 = (𝑤𝑤𝑥𝑥 − 𝐶𝐶3𝑥𝑥 + 𝐶𝐶2𝑦𝑦 − 𝐶𝐶5)(𝐶𝐶1 − 𝐶𝐶3)
𝐺𝐺𝑦𝑦 = �𝑤𝑤𝑦𝑦 + 𝐶𝐶1𝑦𝑦 + 𝐶𝐶2𝑥𝑥 + 𝐶𝐶4�(𝐶𝐶1 − 𝐶𝐶3) ⇒ 

𝐺𝐺 = (𝐶𝐶1 − 𝐶𝐶3)[𝑤𝑤 + 0,5(𝐶𝐶1𝑦𝑦2 − 𝐶𝐶3𝑥𝑥2) + 𝐶𝐶2𝑥𝑥𝑥𝑥 + 𝐶𝐶4𝑥𝑥 − 𝐶𝐶5𝑦𝑦)] + 𝐶𝐶. 
 

We substitute this result into (4) and obtain the pressure expression from (11). T. 2. is 
demonstrated. 

Let’s take an example of application of theorem 2.  
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Example 3. Let w = ln(x2  + y2), C1 = 2, C3 = 1, C2 = C4 = C5 =0, then we obtain these 
solutions: 

 

 �
𝑢𝑢 = 2𝑦𝑦

𝑥𝑥2+𝑦𝑦2
+ 2𝑦𝑦;   𝑣𝑣 = 𝑥𝑥 − 2𝑥𝑥

𝑥𝑥2+𝑦𝑦2
,

𝑃𝑃 = [𝐹𝐹 − 4(2𝑦𝑦2−𝑥𝑥2+1)
𝑥𝑥2+𝑦𝑦2

+ 𝑙𝑙𝑙𝑙(𝑥𝑥2 + 𝑦𝑦2) + 𝑦𝑦2 − 0,5𝑥𝑥2]𝜇𝜇 + 𝐶𝐶
𝐷𝐷 = 𝑂𝑂𝑂𝑂𝑂𝑂\{𝑂𝑂}.  (12)

  

Note.  If C1 ≠ C3, then we obtain solutions of the form (11), which cannot be obtained from 
theorem 1. We mention that in the solutions obtained with the application of theorems 1 and 
2 the viscosity parameter λ does not explicitly participate.  

 

4. Solutions, in which the viscosity parameter participates explicitly. Method of separation of 
variables 

Theorem 3. Let the functions φ(x; y) and z(x; y) admit in the domain D continuous 
partial derivatives up to the second order and let T(φ) be a function doubly differentiable. Let 
these functions verify the following equations (13) and (14): 

 

 �𝜑𝜑𝑥𝑥2 + 𝜑𝜑𝑦𝑦2� ⋅ 𝑇𝑇″ + 𝛥𝛥𝛥𝛥 ⋅ 𝑇𝑇′ + 𝛥𝛥𝑧𝑧0 = 𝜑𝜑 (13) 

 

 𝜑𝜑𝑦𝑦 ⋅ 𝑧𝑧𝑥𝑥 − 𝜑𝜑𝑥𝑥 ⋅ 𝑧𝑧𝑦𝑦 + 𝜆𝜆𝜆𝜆𝜆𝜆 = 0  (14) 
 

where z0 is a particular solution of the equation (14). 
The solutions for system (1) are determined in the following manner: 
First on the determinates the functions u and v out from the following system: 

 

 �
𝑢𝑢 = 𝜑𝜑𝑦𝑦 ⋅ 𝑇𝑇′ + 𝑧𝑧0𝑦𝑦
𝑣𝑣 = −𝜑𝜑𝑥𝑥 ⋅ 𝑇𝑇′ − 𝑧𝑧0𝑥𝑥

 (15) 

then G from  �
𝐺𝐺𝑥𝑥 = 𝜆𝜆𝜑𝜑𝑦𝑦 − 𝑣𝑣 ⋅ 𝜑𝜑
𝐺𝐺𝑦𝑦 = −𝜆𝜆𝜑𝜑𝑥𝑥 + 𝑢𝑢 ⋅ 𝜑𝜑  (16) 

 

and, finally, pressure P from the equality   𝑃𝑃 = 𝜇𝜇[𝐺𝐺 + 𝐹𝐹 − 0,5(𝑢𝑢2 + 𝑣𝑣2)].  (17) 
 

Demonstration T.3 We note 𝑢𝑢𝑦𝑦 − 𝑣𝑣𝑥𝑥 = 𝜑𝜑(𝑥𝑥;𝑦𝑦). (18) 
Then from (7) and (18) we obtain that                   𝛥𝛥𝛥𝛥 = 𝜑𝜑𝑦𝑦, 𝛥𝛥𝛥𝛥 = −𝜑𝜑𝑥𝑥. 

 

Replacing in (6), we obtain for φ the following equation: 
 

 𝜆𝜆𝜆𝜆𝜆𝜆 − 𝑢𝑢𝜑𝜑𝑥𝑥 − 𝑣𝑣𝜑𝜑𝑦𝑦 = 0 (19) 
 

In order to make sure that the condition (4) is fulfilled, we introduce the auxiliary 
function z, which has continuous partial derivatives of the second order in such a way that 
the equalities are true: 

 

 𝑢𝑢 = 𝑧𝑧𝑦𝑦;  𝑣𝑣 = −𝑧𝑧𝑥𝑥 (20) 
 

We substitute expressions (20) in equation (19) and obtain equation (14). 
Considering that φ is a given function, we can consider equation (14) in relation to z 

as a linear equation with partial derivatives of the first order [10]. It is easy to verify that the 

general solution of this equation has the form  
 

 𝑧𝑧 = 𝑇𝑇(𝜑𝜑) + 𝑧𝑧0 (21) 
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where T(φ) is an arbitrary doubly differentiable function, and z0 is a particular solution of 
equation (14). Substituting (21) into equalities (20) and then into (18), we obtain equation 
(13). Thus, finding the functions u, v and P is reduced to determining the functions T, φ and z 
from equations (13) and (14). T. 3. is demonstrated. 

 

Note. For φ ≠ C – constant, theorem 3 generates a series of new solutions of the Navier-
Stokes equations (1), which differ from those obtained in theorems 1 and 2; in this case at 
least one of the velocity components u or v will already not be a solution of Laplace's. 

Relations (13) and (14) represent two equations with three unknown functions, which 
allow us to choose one of them in a convenient way for further study, and to determine the 
other two. 

In the following we will study different particular cases, choosing in particular a 
certain form of the function φ. 

 

𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 𝟏𝟏. The function 𝜑𝜑 is a solution of Laplace′s equation, that is  Δ𝜑𝜑 = 0. 
In this case, the general solution of equation (14) is z = T(φ), z0 = 0, and T is determined 

from the equation �𝜑𝜑𝑥𝑥
2 + 𝜑𝜑𝑦𝑦2� ⋅ 𝑇𝑇″(𝜑𝜑) = 𝜑𝜑  

This equation can be solved when the expression   𝜑𝜑𝑥𝑥
2 + 𝜑𝜑𝑦𝑦2  represents a function that 

depends on the variable φ or this expression is constant. 
We note that in this case only the pressure P depends on the viscosity parameter λ, 

the functions u and v do not depend on the viscosity. 

Example 4.  May  𝜑𝜑 = 𝐶𝐶 𝑙𝑙𝑙𝑙(𝑥𝑥2 + 𝑦𝑦2);   𝜑𝜑𝑥𝑥2 + 𝜑𝜑𝑦𝑦2 = 4𝐶𝐶2

𝑥𝑥2+𝑦𝑦2
= 4𝐶𝐶2

𝑒𝑒𝜑𝜑/𝐶𝐶 ;   𝑇𝑇″(𝜑𝜑) = 𝜑𝜑⋅𝑒𝑒𝜑𝜑/𝐶𝐶

4𝐶𝐶2
 ⇒   

⇒ 𝑇𝑇′ =
𝑒𝑒𝜑𝜑/𝐶𝐶(𝜑𝜑 − 𝐶𝐶)

4𝐶𝐶 + 𝐶𝐶1 =
(𝑥𝑥2 + 𝑦𝑦2)[𝑙𝑙𝑙𝑙( 𝑥𝑥2 + 𝑦𝑦2) − 1]

4 + 𝐶𝐶1. 
 

From (15) we obtain that  

                                          �
𝑢𝑢 = 𝜑𝜑𝑦𝑦 ⋅ 𝑇𝑇′ = 𝐶𝐶𝐶𝐶 ⋅ [𝑙𝑙𝑙𝑙(𝑥𝑥2+𝑦𝑦2)−1

2
+ 2𝐶𝐶1

𝑥𝑥2+𝑦𝑦2
],

𝑣𝑣 = −𝜑𝜑𝑥𝑥 ⋅ 𝑇𝑇′ = −𝐶𝐶𝐶𝐶 ⋅ [𝑙𝑙𝑙𝑙(𝑥𝑥2+𝑦𝑦2)−1
2

− 2𝐶𝐶1
𝑥𝑥2+𝑦𝑦2

].
                                  (22)

 where C ≠ 0 and C1 are arbitrary constants. To determine the pressure according to the 

formula (17), we first find the function G from the system (16): 

�𝐺𝐺𝑥𝑥 = 2𝜆𝜆𝜆𝜆𝜆𝜆
𝑥𝑥2+𝑦𝑦2

+ 𝑥𝑥 ⋅ 𝑄𝑄;   𝐺𝐺𝑦𝑦 = − 2𝜆𝜆𝜆𝜆𝜆𝜆
𝑥𝑥2+𝑦𝑦2

+ 𝑦𝑦 ⋅ 𝑄𝑄;𝑄𝑄 = 𝐶𝐶2ln (𝑥𝑥2 + 𝑦𝑦2)[𝑙𝑙𝑙𝑙(𝑥𝑥2+𝑦𝑦2)−1
2

+ 2𝐶𝐶1
𝑥𝑥2+𝑦𝑦2

]
⇒

. 

�𝐺𝐺 = −2𝜆𝜆𝜆𝜆 ⋅ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑦𝑦
𝑥𝑥

) + 𝐶𝐶2(𝑥𝑥2+𝑦𝑦2)
4

[𝑙𝑙𝑙𝑙2( 𝑥𝑥2 + 𝑦𝑦2) − 3 𝑙𝑙𝑙𝑙( 𝑥𝑥2 + 𝑦𝑦2) + 3] + 𝐶𝐶1 𝑙𝑙𝑙𝑙( 𝑥𝑥2 + 𝑦𝑦2) + 𝐶𝐶2
𝑃𝑃 = 𝜇𝜇[𝐺𝐺 + 𝐹𝐹 − 0,5(𝑢𝑢2 + 𝑣𝑣2)]  

 

Example 5.   𝜑𝜑𝑥𝑥
2 + 𝜑𝜑𝑦𝑦2 = 𝐶𝐶2 − constant.  We look for function  𝜑𝜑  in the following way: .    

𝜑𝜑 = 𝛼𝛼(𝑥𝑥) + 𝛽𝛽(𝑦𝑦) ⇒ 𝜑𝜑𝑥𝑥2 + 𝜑𝜑𝑦𝑦2 = (𝛼𝛼′)2 + (𝛽𝛽′)2 = 𝐶𝐶2 ⇒ (𝛼𝛼′)2 = 𝐶𝐶2 − (𝛽𝛽′)2 = 𝐶𝐶12.   Then 

�
𝛼𝛼′(𝑥𝑥) = ±𝐶𝐶1

𝛽𝛽′(𝑦𝑦) = ±�𝐶𝐶2 − 𝐶𝐶12
⇒�

𝛼𝛼 = ±𝐶𝐶1𝑥𝑥 + 𝑐𝑐1
𝛽𝛽 = ±�𝐶𝐶2 − 𝐶𝐶12𝑦𝑦 + 𝑐𝑐2

⇒  𝜑𝜑 = 𝐶𝐶1𝑥𝑥 + 𝐶𝐶2𝑦𝑦 + 𝑐𝑐,𝐶𝐶12 + 𝐶𝐶22 = 𝐶𝐶2. 

Obviously,  𝛥𝛥𝛥𝛥 = 0.  From  �𝜑𝜑𝑥𝑥2 + 𝜑𝜑𝑦𝑦2� ⋅ 𝑇𝑇″ = 𝜑𝜑   we obtain that   𝑇𝑇″ = 𝐶𝐶−2𝜑𝜑 ⇒ 𝑇𝑇′ = 𝜑𝜑2

2𝐶𝐶2
+ 𝑘𝑘. 
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For the velocity components we get: 

  

�
𝑢𝑢 = 𝐶𝐶2𝜑𝜑2

2𝐶𝐶2
+  𝑘𝑘𝐶𝐶2

𝑣𝑣 = −𝐶𝐶1𝜑𝜑2

2𝐶𝐶2
−  𝑘𝑘𝐶𝐶1

;   𝜑𝜑 = 𝐶𝐶1𝑥𝑥 + 𝐶𝐶2𝑦𝑦 +

𝑐𝑐.                     (23), 
were 𝐶𝐶2 = 𝐶𝐶12 + 𝐶𝐶22 ;   𝑐𝑐 ,𝐶𝐶1,𝐶𝐶2,𝑘𝑘 – arbitrary constants. From system (16) we find function G: 

⎩
⎨

⎧ 𝐺𝐺𝑥𝑥 = 𝜆𝜆𝐶𝐶2 +
𝐶𝐶1𝜑𝜑3

2𝐶𝐶2 + 𝑘𝑘𝑘𝑘1𝜑𝜑

𝐺𝐺𝑦𝑦 = −𝜆𝜆𝐶𝐶1 +
𝐶𝐶2𝜑𝜑3

2𝐶𝐶2 + 𝑘𝑘𝑘𝑘2𝜑𝜑
⇒ 𝐺𝐺 = 𝜆𝜆(𝐶𝐶2𝑥𝑥 − 𝐶𝐶1𝑦𝑦) +

𝜑𝜑4

8𝐶𝐶2 + 𝑘𝑘
𝜑𝜑2

2 + 𝐶𝐶3.    

 

The Pressure will be equal to  
 
𝑃𝑃 = 𝜇𝜇[𝐹𝐹 + 𝜆𝜆(𝐶𝐶2𝑥𝑥 − 𝐶𝐶1𝑦𝑦)+ 𝐶𝐶4],  𝐶𝐶4 =  𝐶𝐶3 −

(𝑘𝑘𝑘𝑘)2

2
.   

 (24)
        

Case 2. φ = f(y) + g(x) , where functions  f  and  g  are doubly differentiable. Then 
equation (14) has the following form: 

 

𝑓𝑓′(𝑦𝑦)𝑧𝑧𝑥𝑥 − 𝑔𝑔′(𝑥𝑥)𝑧𝑧𝑦𝑦 + 𝜆𝜆[𝑓𝑓″(𝑦𝑦) + 𝑔𝑔″(𝑥𝑥)] = 0 ⇒
𝑧𝑧𝑥𝑥
𝑔𝑔′ −

𝑧𝑧𝑦𝑦
𝑓𝑓′ + 𝜆𝜆 �

𝑓𝑓″

𝑓𝑓′ ⋅ 𝑔𝑔′ +
𝑔𝑔″

𝑔𝑔′ ⋅ 𝑓𝑓′� = 0.         (25) 

 

We determine functions f(y) and g(x) in the following way: 

 

�𝑓𝑓
″(𝑦𝑦) = 𝐶𝐶1𝑓𝑓′(𝑦𝑦)

𝑔𝑔″(𝑥𝑥) = 𝐶𝐶2𝑔𝑔′(𝑥𝑥) ⇒     
 

⇒ �𝑓𝑓
′(𝑦𝑦) = 𝐶𝐶1𝑓𝑓(𝑦𝑦) + 𝛼𝛼1

𝑔𝑔′(𝑥𝑥) = 𝐶𝐶2𝑔𝑔(𝑥𝑥) + 𝛼𝛼2
⇒ �

𝑓𝑓 = 𝑘𝑘1𝑒𝑒𝐶𝐶1𝑦𝑦 −
𝛼𝛼1
𝐶𝐶1

𝑔𝑔 = 𝑘𝑘2𝑒𝑒𝐶𝐶2𝑥𝑥 −
𝛼𝛼2
𝐶𝐶2

⇒    𝜑𝜑 = 𝑘𝑘1𝑒𝑒𝐶𝐶1𝑦𝑦 + 𝑘𝑘2𝑒𝑒𝐶𝐶2𝑥𝑥 + 𝛼𝛼               (26), 

 

where k1, k2, α, C1, C2 are arbitrary constants. 

A particular solution of equation (25) is 
 
𝑧𝑧0 = 𝜆𝜆(𝐶𝐶2𝑦𝑦 − 𝐶𝐶1𝑥𝑥).   

Replacing function z0 and φ from (26) in (13) we obtain the equation for determining 
function T:

  
 

(𝐶𝐶12𝑘𝑘12𝑒𝑒2𝐶𝐶1𝑦𝑦 + 𝐶𝐶22𝑘𝑘22𝑒𝑒2𝐶𝐶2𝑥𝑥)𝑇𝑇″ + (𝐶𝐶12𝑘𝑘1𝑒𝑒𝐶𝐶1𝑦𝑦 + 𝐶𝐶22𝑘𝑘2𝑒𝑒𝐶𝐶2𝑥𝑥)𝑇𝑇′ = 𝑘𝑘1𝑒𝑒𝐶𝐶1𝑦𝑦 + 𝑘𝑘2𝑒𝑒𝐶𝐶2𝑥𝑥 + 𝛼𝛼.             (27) 
 

Equation (27) can take place when T is linear or one of the functions f or g is constant. May it 

be  
𝑇𝑇 = 𝐶𝐶𝐶𝐶 ⇒ 𝑇𝑇′ = 𝐶𝐶 ⇒  𝑇𝑇″ = 0.   Substituting in (27), we get

 
first 

 

(𝐶𝐶12𝑘𝑘1𝑒𝑒𝐶𝐶1𝑦𝑦 + 𝐶𝐶22𝑘𝑘2𝑒𝑒𝐶𝐶2𝑥𝑥)𝐶𝐶 = 𝑘𝑘1𝑒𝑒𝐶𝐶1𝑦𝑦 + 𝑘𝑘2𝑒𝑒𝐶𝐶2𝑥𝑥 + 𝛼𝛼 ⇒   𝛼𝛼 = 0,   𝐶𝐶12 = 𝐶𝐶22 = 𝐶𝐶−1. 
 

Replacing in (15) on obtain following solutions of system (1):  

� 𝑢𝑢 = 𝑘𝑘1𝐶𝐶1−1𝑒𝑒𝐶𝐶1𝑦𝑦 + 𝜆𝜆𝐶𝐶2
𝑣𝑣 = −𝑘𝑘2𝐶𝐶2−1𝑒𝑒𝐶𝐶2𝑥𝑥 + 𝜆𝜆𝐶𝐶1

;   𝐶𝐶12 = 𝐶𝐶22.
     (28) 

Then we determine the function G from the system (16): 

�
𝐺𝐺𝑥𝑥 = 𝜆𝜆𝜑𝜑𝑦𝑦 − 𝑣𝑣 ⋅ 𝜑𝜑 = 𝜆𝜆𝑘𝑘1𝐶𝐶1𝑒𝑒𝐶𝐶1𝑦𝑦 + (𝑘𝑘2𝐶𝐶2−1𝑒𝑒𝐶𝐶2𝑥𝑥 − 𝜆𝜆𝐶𝐶1)(𝑘𝑘1𝑒𝑒𝐶𝐶1𝑦𝑦 + 𝑘𝑘2𝑒𝑒𝐶𝐶2𝑥𝑥)

𝐺𝐺𝑦𝑦 = −𝜆𝜆𝜑𝜑𝑥𝑥 + 𝑢𝑢 ⋅ 𝜑𝜑 = −𝜆𝜆𝑘𝑘2𝐶𝐶2𝑒𝑒𝐶𝐶2𝑥𝑥 + (𝑘𝑘1𝐶𝐶1−1𝑒𝑒𝐶𝐶1𝑦𝑦 + 𝜆𝜆𝐶𝐶2)(𝑘𝑘1𝑒𝑒𝐶𝐶1𝑦𝑦 + 𝑘𝑘2𝑒𝑒𝐶𝐶2𝑥𝑥)
⇒

 
⇒ 𝐺𝐺 = 𝐶𝐶(𝑘𝑘1𝑒𝑒𝐶𝐶1𝑦𝑦+𝑘𝑘2𝑒𝑒𝐶𝐶2𝑥𝑥)2

2
+ 𝜆𝜆 � 𝑘𝑘1𝐶𝐶2𝑒𝑒

𝐶𝐶1𝑦𝑦

𝐶𝐶1
− 𝑘𝑘2𝐶𝐶1𝑒𝑒𝐶𝐶2𝑥𝑥

𝐶𝐶2
 � ,𝐶𝐶2 = ±𝐶𝐶1.   



 Iu. Baltag 45 

Journal of Engineering Science  December, 2022, Vol. XXIX (4) 

Then we find the pressure:  
𝑃𝑃 = 𝜇𝜇[𝐹𝐹 + 𝜆𝜆𝑘𝑘1𝑘𝑘2𝑒𝑒𝐶𝐶1𝑦𝑦+𝐶𝐶2𝑥𝑥 + 𝐶𝐶0].      (29) 

 
Let now that f(y) = m - constant.  Then φ = m + g(x) and from (19) we obtain that: 

−𝑔𝑔′(𝑥𝑥)𝑧𝑧𝑦𝑦 + 𝜆𝜆𝑔𝑔″(𝑥𝑥) = 0   ⇒     𝑢𝑢 = 𝑧𝑧𝑦𝑦 =
𝜆𝜆𝑔𝑔″(𝑥𝑥)
𝑔𝑔′(𝑥𝑥) ; 𝑢𝑢𝑦𝑦 = 0. 

From (7) we have that
 𝑢𝑢𝑥𝑥 + 𝑣𝑣𝑦𝑦 = 0 ⇒  𝑣𝑣 = −𝑢𝑢𝑥𝑥 ⋅ 𝑦𝑦 + 𝛽𝛽(𝑥𝑥).   

From (18) it follows that    𝑢𝑢𝑦𝑦 − 𝑣𝑣𝑥𝑥 = 𝜑𝜑  ⇒  𝑣𝑣𝑥𝑥 = −𝜑𝜑  ⇒   −𝑢𝑢𝑥𝑥𝑥𝑥 ⋅ 𝑦𝑦 + 𝛽𝛽′(𝑥𝑥) = −𝑚𝑚 − 𝑔𝑔(𝑥𝑥).  

The last equality can only occur if   𝑢𝑢𝑥𝑥𝑥𝑥 = 0, 𝛽𝛽′(𝑥𝑥) = −𝑚𝑚 − 𝑔𝑔(𝑥𝑥).  From this results that  

(𝑔𝑔
″(𝑥𝑥)
𝑔𝑔′(𝑥𝑥))″ = 0 ⇒   𝑔𝑔

″(𝑥𝑥)
𝑔𝑔′(𝑥𝑥) = 𝑎𝑎𝑎𝑎 + 𝑏𝑏 ⇒ 𝑔𝑔(𝑥𝑥) = 𝑐𝑐 ∫ 𝑒𝑒�

𝑎𝑎𝑥𝑥2

2  + 𝑏𝑏𝑏𝑏�𝑑𝑑𝑑𝑑 ;   𝛽𝛽(𝑥𝑥) = −𝑚𝑚𝑚𝑚 − ∫𝑔𝑔(𝑥𝑥)𝑑𝑑𝑑𝑑. 
 

In this way we obtain the following solutions of the velocity components system (1): 

   𝑢𝑢 = 𝜆𝜆(𝑎𝑎𝑎𝑎 + 𝑏𝑏);  𝑣𝑣 = −𝜆𝜆𝜆𝜆𝜆𝜆 − 𝑚𝑚𝑚𝑚 − ∫𝑔𝑔(𝑥𝑥)𝑑𝑑𝑑𝑑;  𝑔𝑔(𝑥𝑥) = ∫ 𝑐𝑐 𝑒𝑒�
𝑎𝑎𝑥𝑥2

2  + 𝑏𝑏𝑏𝑏�𝑑𝑑𝑑𝑑.                  (30) 
where a, b, m, c are arbitrary constants. The presure in this caze is: 

𝑃𝑃 = 𝜇𝜇[𝐹𝐹 − 0,5𝑎𝑎𝑎𝑎2(𝑥𝑥2 + 𝑎𝑎𝑦𝑦2 + 𝑏𝑏𝑏𝑏) − 𝜆𝜆𝜆𝜆𝜆𝜆 + 𝐶𝐶0].       (31)
 

If in (30) we take a = 0, then   𝜑𝜑 = 𝑐𝑐
𝑏𝑏
𝑒𝑒𝑏𝑏𝑏𝑏 + 𝑚𝑚  we obtain the following solutions of system 

(1): 
 
𝑢𝑢 = 𝜆𝜆𝜆𝜆;   𝑣𝑣 = 𝑐𝑐1 − 𝑚𝑚𝑚𝑚 − 𝑐𝑐𝑏𝑏−2𝑒𝑒𝑏𝑏𝑏𝑏;    𝑃𝑃 = 𝜇𝜇[𝐹𝐹 − 𝜆𝜆(𝑏𝑏𝑏𝑏 + 𝑐𝑐)𝑦𝑦+𝐶𝐶0].                                   

(32) 
  If a = 0 and b = 0, then g(x) = c1 + cx and we obtain the solutions:  

𝑢𝑢 =  0,   𝑣𝑣 =  − 𝑐𝑐
2𝜆𝜆
𝑥𝑥2 + 𝑐𝑐1𝑥𝑥 + 𝑐𝑐2, 𝑃𝑃 = 𝜇𝜇[𝐹𝐹 − 𝜆𝜆𝜆𝜆𝜆𝜆 + 𝑐𝑐0 ].      (33) 

Le t g(x) = m - constant. Then φ = m + f(y) and we obtain: 

         𝑣𝑣 = 𝜆𝜆(𝑎𝑎𝑎𝑎 + 𝑏𝑏);  𝑢𝑢 = 𝜆𝜆𝜆𝜆𝜆𝜆 + 𝑚𝑚𝑚𝑚 + ∫𝑓𝑓(𝑦𝑦)𝑑𝑑𝑑𝑑;  𝑓𝑓(𝑦𝑦) = ∫ 𝑐𝑐 𝑒𝑒(𝑎𝑎𝑦𝑦
2

2 +𝑏𝑏𝑏𝑏)𝑑𝑑𝑑𝑑.
                         (34) 

Specifically, if in (33) we take a = 0, then   𝜑𝜑 = 𝑐𝑐
𝑏𝑏
𝑒𝑒𝑏𝑏𝑏𝑏 + 𝑚𝑚.  And we obtain solutions: 

   
                𝑣𝑣 = 𝜆𝜆𝜆𝜆;  𝑢𝑢 = 𝑐𝑐1 − 𝑚𝑚𝑚𝑚 −

𝑐𝑐
𝑏𝑏2 𝑒𝑒

𝑏𝑏𝑏𝑏;    𝑃𝑃 = [𝐹𝐹 − 𝜆𝜆(𝑏𝑏𝑏𝑏 + 𝑐𝑐)𝑥𝑥+𝐶𝐶0].                                       (35) 

If  a = 0, b = 0, then   f(y) = cy + c1   and we obtain the following solutions:         

      
𝑣𝑣 =  0;    𝑢𝑢 =  −

𝑐𝑐
2𝜆𝜆 𝑦𝑦

2 + 𝑐𝑐1𝑦𝑦 + 𝑐𝑐2;   𝑃𝑃 = 𝜇𝜇(𝐹𝐹 − 𝜆𝜆𝜆𝜆𝜆𝜆 + 𝑐𝑐0   ).                                         (36) 

 
Case 3. φ = f(y)•g(x), where functions f and g are doubly differentiable.  

In this case equation (14) is:  𝑓𝑓
′(𝑦𝑦)𝑔𝑔(𝑥𝑥)𝑧𝑧𝑥𝑥 − 𝑔𝑔′(𝑥𝑥)𝑓𝑓(𝑦𝑦)𝑧𝑧𝑦𝑦 + 𝜆𝜆[𝑔𝑔(𝑥𝑥)𝑓𝑓″(𝑦𝑦) + 𝑓𝑓(𝑦𝑦)𝑔𝑔″(𝑥𝑥)] =

0 ⇒ 
  
𝑔𝑔𝑧𝑧𝑥𝑥
𝑔𝑔′ −

𝑓𝑓𝑧𝑧𝑦𝑦
𝑓𝑓′ + 𝜆𝜆 �

𝑔𝑔𝑓𝑓″

𝑓𝑓′ ⋅ 𝑔𝑔′ +
𝑓𝑓𝑔𝑔″

𝑔𝑔′ ⋅ 𝑓𝑓′� = 0                                                                (37).
 

We determine  f  and  g  in the following way:  
 
�𝑓𝑓

′(𝑦𝑦) = 𝐶𝐶1𝑓𝑓(𝑦𝑦)
𝑔𝑔′(𝑥𝑥) = 𝐶𝐶2𝑔𝑔(𝑥𝑥) ⇒  �𝑓𝑓

″ = 𝐶𝐶1𝑓𝑓′
𝑔𝑔″ = 𝐶𝐶2𝑔𝑔′

  ⇒ 

�𝑓𝑓 = 𝛼𝛼1𝑒𝑒𝐶𝐶1𝑦𝑦

𝑔𝑔 = 𝛼𝛼2𝑒𝑒𝐶𝐶2𝑥𝑥
⇒   𝜑𝜑 = 𝛼𝛼𝑒𝑒𝐶𝐶1𝑦𝑦+𝐶𝐶2𝑥𝑥,𝛼𝛼 = 𝛼𝛼1𝛼𝛼2                                                        (38)
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Then from (34) we obtain:
 

𝑧𝑧𝑥𝑥
𝐶𝐶2
−
𝑧𝑧𝑦𝑦
𝐶𝐶1

+ 𝜆𝜆 �
𝐶𝐶1
𝐶𝐶2

+
𝐶𝐶2
𝐶𝐶1
� = 0 ⇒  𝐶𝐶1𝑧𝑧𝑥𝑥 − 𝐶𝐶2𝑧𝑧𝑦𝑦 = −𝜆𝜆(𝐶𝐶12 + 𝐶𝐶22)                                     (39) 

The general solution of equation (38)  is    𝑧𝑧 = 𝑇𝑇(𝜑𝜑) + 𝑧𝑧0,    where    𝑧𝑧0 = 𝜆𝜆(𝐶𝐶2𝑦𝑦 − 𝐶𝐶1𝑥𝑥).  
Substituting (38) in (13), we obtain the equation for T(φ): 

[𝐶𝐶12𝛼𝛼2𝑒𝑒2(𝐶𝐶1𝑦𝑦+𝐶𝐶2𝑥𝑥) + 𝐶𝐶22𝛼𝛼2𝑒𝑒2(𝐶𝐶2𝑥𝑥+𝐶𝐶1𝑦𝑦)]𝑇𝑇″ + [𝛼𝛼(𝐶𝐶12 + 𝐶𝐶22)𝑒𝑒𝐶𝐶2𝑥𝑥+𝐶𝐶1𝑦𝑦]𝑇𝑇′ = 𝛼𝛼𝑒𝑒𝐶𝐶1𝑦𝑦+𝐶𝐶2𝑥𝑥.   

From here        𝛼𝛼𝑒𝑒
(𝐶𝐶2𝑥𝑥+𝐶𝐶1𝑦𝑦) ⋅ 𝑇𝑇″ + 𝑇𝑇′ =   1

  �𝐶𝐶12+𝐶𝐶22�
                                                                            (40) 

Or       𝜑𝜑 ⋅ 𝑤𝑤
′ + 𝑤𝑤 = 𝑚𝑚;   𝑚𝑚 = 1

 �𝐶𝐶12+𝐶𝐶22�
,   𝑤𝑤(𝜑𝜑) = 𝑇𝑇′(𝜑𝜑).                                                               (41) 

Equation (40) is a linear ordinary differential equation of order 1 with the unknown 
function w. The general solution ([11], [12]) of the given equation is: 𝑤𝑤 = 𝑚𝑚 + 𝑐𝑐

𝜑𝜑
= 𝐹𝐹′.   In this 

case we obtain the following solutions of system (1): 

� 𝑢𝑢 = 𝑚𝑚1𝑒𝑒𝐶𝐶1𝑦𝑦+𝐶𝐶2𝑥𝑥 + 𝑐𝑐𝐶𝐶1 + 𝜆𝜆𝐶𝐶2
𝑣𝑣 = −𝑚𝑚2𝑒𝑒𝐶𝐶1𝑦𝑦+𝐶𝐶2𝑥𝑥 − 𝑐𝑐𝐶𝐶2 + 𝜆𝜆𝐶𝐶1

;𝑚𝑚𝑛𝑛 = 𝛼𝛼𝐶𝐶𝑛𝑛
𝐶𝐶1 
2+𝐶𝐶22

 ,𝑛𝑛 = 1, 2.
                                        (42) 

 
𝐺𝐺 = 0,5𝛼𝛼2𝑚𝑚𝑒𝑒2(𝐶𝐶1𝑦𝑦+𝐶𝐶2𝑥𝑥) + 𝛼𝛼𝛼𝛼𝑒𝑒(𝐶𝐶1𝑦𝑦+𝐶𝐶2𝑥𝑥) + 𝐶𝐶0;    𝑃𝑃 = 𝜇𝜇[ 𝐹𝐹 + (𝜆𝜆2 + 𝑐𝑐2)(𝐶𝐶12 + 𝐶𝐶22)].  
Where α, c, C1, C2 are arbitrary constants. 

Note. In the case of the current given by (41), in the absence of external force, the pressure 
is constant. Solutions (41) and (23) represent those cases, when there is a linear dependence 
between the velocity components. Thus, in the case of these solutions we have 
correspondingly, that  

𝑣𝑣 = −𝐶𝐶2
𝐶𝐶1
𝑢𝑢 + 𝜆𝜆𝐶𝐶1 + 𝜆𝜆𝜆𝜆2

2

𝐶𝐶1
;  𝑣𝑣 = −𝐶𝐶1

𝐶𝐶2
𝑢𝑢.

  
Case 4.  φ = f(t) = f(kx + by ), where function  f(t)  is doubly differentiable. 
In this case equation (14) has the following form:   

𝑏𝑏𝑧𝑧𝑥𝑥 − 𝑘𝑘𝑧𝑧𝑦𝑦 + 𝜆𝜆(𝑏𝑏2 + 𝑘𝑘2)
𝑓𝑓′′

𝑓𝑓′ = 0                                                                            (43)
 

We will examine the case    
𝑓𝑓′′

𝑓𝑓′
= C − constant, 𝐶𝐶 ≠ 0.  Then  

                            𝑓𝑓′(𝑡𝑡) = 𝐶𝐶1𝑒𝑒𝐶𝐶𝐶𝐶 ⇒ 𝜑𝜑 = 𝑓𝑓(𝑡𝑡) = �
𝐶𝐶1
𝐶𝐶
� 𝑒𝑒𝐶𝐶𝐶𝐶 + 𝐶𝐶2;  𝑡𝑡 = 𝑘𝑘𝑘𝑘 + 𝑏𝑏𝑏𝑏.                                (44) 

The general solution for equation (42) will be  
 
𝑧𝑧 = 𝑇𝑇(𝑡𝑡)+ 𝑧𝑧0,  where  𝑧𝑧0 = 𝜆𝜆𝜆𝜆(𝑘𝑘𝑘𝑘 − 𝑏𝑏𝑏𝑏),

From (6) we obtain the equation for determining the function 𝑇𝑇:   
𝑓𝑓′𝑇𝑇′′ + 𝐶𝐶𝑇𝑇′ =

𝑓𝑓
𝑓𝑓′(𝑘𝑘2 + 𝑏𝑏2) ,𝑓𝑓′ = 𝐶𝐶(𝑓𝑓 − 𝐶𝐶2).                                                            (45) 

Or           (𝑓𝑓 − 𝐶𝐶2) ⋅ 𝑤𝑤′ + 𝑤𝑤 = 𝑓𝑓
𝑚𝑚(𝑓𝑓−𝐶𝐶2) ;   𝑚𝑚 = 𝐶𝐶2(𝑘𝑘2 + 𝑏𝑏2),   𝑤𝑤(𝑓𝑓) = 𝑇𝑇′(𝑓𝑓).                       (46) 

We obtained a linear ordinary differential equation of order 1 with the unknown function w.  

The general solution for equation (46) is           𝑤𝑤 = 1
𝑚𝑚(𝑓𝑓−𝐶𝐶2)

[𝑓𝑓 + 𝐶𝐶2ln (𝑓𝑓 − 𝐶𝐶2) + 𝐶𝐶0].    

Hence, considering relations (44) and (45), we obtain the following equality: 

                        𝑇𝑇′ = 𝑒𝑒−𝐶𝐶𝐶𝐶

𝑚𝑚𝐶𝐶1
[𝐶𝐶1𝑒𝑒𝐶𝐶𝐶𝐶 + 𝐶𝐶2𝐶𝐶2𝑡𝑡 + 𝐶𝐶3],𝐶𝐶3 =  𝐶𝐶0 + 𝐶𝐶𝐶𝐶2𝑙𝑙𝑙𝑙 �

𝐶𝐶1
𝐶𝐶
� .                                (47)  

In this case for the velocity components we have the following solutions: 
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�
𝑢𝑢 = 𝜑𝜑𝑦𝑦 ⋅ 𝑇𝑇′ + 𝑧𝑧0𝑦𝑦 = 𝑏𝑏

𝑚𝑚
[𝐶𝐶1𝑒𝑒𝐶𝐶𝐶𝐶 + 𝐶𝐶2𝐶𝐶2𝑡𝑡 + 𝐶𝐶3] + 𝜆𝜆𝜆𝜆𝜆𝜆

𝑣𝑣 = −𝜑𝜑𝑥𝑥 ⋅ 𝑇𝑇′ − 𝑧𝑧0𝑥𝑥 = − 𝑘𝑘
𝑚𝑚

[𝐶𝐶1𝑒𝑒𝐶𝐶𝐶𝐶 + 𝐶𝐶2𝐶𝐶2𝑡𝑡 + 𝐶𝐶3] + 𝜆𝜆𝜆𝜆𝜆𝜆
;  𝑡𝑡 = 𝑘𝑘𝑘𝑘 + 𝑏𝑏𝑏𝑏. 

           (48), 
where m = C2(k2 + b2); k, b, C, C1, C2, C3 are arbitrary constants. 
Note. If in (48) we take C2 = 0, then we will obtain solutions of the form (42). 

 

Case 5. 𝛥𝛥𝛥𝛥 = 𝐶𝐶1𝜑𝜑𝑥𝑥 + 𝐶𝐶2𝜑𝜑𝑦𝑦 , with  𝐶𝐶1,𝐶𝐶2 − constants. 
In this case equation (14) has the following form: 

 

 𝑧𝑧𝑥𝑥
𝜑𝜑𝑥𝑥
− 𝑧𝑧𝑦𝑦

𝜑𝜑𝑦𝑦
+ 𝜆𝜆 �𝐶𝐶1

𝜑𝜑𝑦𝑦
+ 𝐶𝐶2

𝜑𝜑𝑥𝑥
� = 0. (49) 

 

The general solution of this equation will be
 
𝑧𝑧 = 𝑇𝑇(𝑓𝑓)+ 𝑧𝑧0, where 

 
 
 𝑧𝑧0 = 𝜆𝜆(𝐶𝐶1𝑦𝑦 − 𝐶𝐶2𝑥𝑥).  

 
We will determine the function φ, applying the method of separation of variables ([12], 
[13]).  

If 𝜑𝜑 = 𝑎𝑎(𝑥𝑥) + 𝑏𝑏(𝑦𝑦), then we will obtain solutions of the form (S33) – (S35) examinate of 

case 2. 

Let 𝜑𝜑 = 𝑎𝑎(𝑥𝑥)𝑏𝑏(𝑦𝑦). Then from 𝛥𝛥𝛥𝛥 = 𝐶𝐶1𝜑𝜑𝑥𝑥 + 𝐶𝐶2𝜑𝜑𝑦𝑦 ⇒  𝑎𝑎
′′

𝑎𝑎
+  𝑏𝑏

′′

𝑏𝑏
= 𝐶𝐶1

𝑎𝑎′

𝑎𝑎
+ 𝐶𝐶2

𝑏𝑏′

𝑏𝑏
 ⇒  

 𝑎𝑎
′′−𝐶𝐶1𝑎𝑎′

𝑎𝑎
=  −𝑏𝑏

′′+𝐶𝐶2𝑏𝑏′

𝑏𝑏
= 𝐶𝐶, where C is an arbitrary constant. 

From here, to determine the functions a(x) and b(y) we obtain the following system of 
ordinary differential equations: 

 

 �𝑎𝑎
′′ − 𝐶𝐶1𝑎𝑎′ − 𝐶𝐶𝐶𝐶 = 0,
𝑏𝑏′′ − 𝐶𝐶2𝑏𝑏′ + 𝐶𝐶𝐶𝐶 = 0. (50) 

 

The general solution of the first equation in (50), depending on the value of  𝑘𝑘1 = 𝐶𝐶12 +
4𝐶𝐶,  will be: 

1) 𝑘𝑘1 > 0;   𝑎𝑎(𝑥𝑥) = 𝑎𝑎1𝑒𝑒𝛼𝛼1𝑥𝑥 + 𝑎𝑎2𝑒𝑒𝛼𝛼2𝑥𝑥 , 𝛼𝛼1,2 =  0,5(𝐶𝐶1  ± �𝑘𝑘1 ); 
2) 𝑘𝑘1 < 0;   𝑎𝑎(𝑥𝑥) = 𝑒𝑒0,5𝐶𝐶1𝑥𝑥�𝑎𝑎1 cos��−𝑘𝑘1𝑥𝑥� + 𝑎𝑎2 sin��−𝑘𝑘1𝑥𝑥��; 

  3) 𝑘𝑘1 = 0;   𝑎𝑎(𝑥𝑥) = 𝑒𝑒0,5𝐶𝐶1𝑥𝑥(𝑎𝑎1 + 𝑥𝑥𝑎𝑎2).  
For the second equation in (50) the form of the general solution will be the same, but 

depending on the value of 𝑘𝑘2 = 𝐶𝐶22 − 4𝐶𝐶 , replacing in 1), 2), 3)  x with y, 𝛼𝛼1,2 with  𝛽𝛽1,2 and 
the arbitrary constants a1, a2, with the corresponding arbitrary constants  b1, b2 ([10], [11]). 

From (13) we deduce the equation for determining function T: 
 

 [(𝑎𝑎′𝑏𝑏)2 +⋅ (𝑏𝑏′𝑎𝑎)2]𝐹𝐹″ +⋅ [𝑎𝑎′′𝑏𝑏 +  𝑏𝑏′′𝑎𝑎]𝐹𝐹′ = 𝑎𝑎𝑎𝑎. (51) 
 

We will first consider that 𝑇𝑇′ = l - constant. Then 𝑇𝑇′′ = 0 and from (51) we obtain 
that 

 [𝑎𝑎
′′

𝑎𝑎
+ 𝑏𝑏

′′

𝑏𝑏
   ]𝑙𝑙 = 1. (52) 

 

Equality (52) can only occur if both fractions in the square bracket have constant 
values. We will examine these possibilities.  
𝒂𝒂) −𝐶𝐶12 < 4𝐶𝐶 < 𝐶𝐶22.  Then  𝑘𝑘1 > 0  și  𝑘𝑘2 > 0  and we take  𝑎𝑎(𝑥𝑥) = 𝑎𝑎𝑛𝑛𝑒𝑒𝛼𝛼𝑛𝑛𝑥𝑥, 𝑏𝑏(𝑦𝑦) = 𝑏𝑏𝑚𝑚𝑒𝑒𝛽𝛽𝑚𝑚𝑦𝑦;  

𝑛𝑛,𝑚𝑚 = 1, 2, where  𝛼𝛼1,2 =  0,5�𝐶𝐶1  ± �𝑘𝑘1 �, 𝛽𝛽1,2 =  0,5�𝐶𝐶2  ± �𝑘𝑘2 �,   
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Then  𝑎𝑎′′ = 𝛼𝛼𝑛𝑛2𝑎𝑎, 𝑏𝑏′′ = 𝛽𝛽𝑚𝑚2 𝑏𝑏  și  𝑙𝑙 =  1/(𝛼𝛼𝑛𝑛2 +  𝛽𝛽𝑚𝑚2 ). In this case we obtain the 
following solutions of system (1):  

  � 𝑢𝑢 = 𝑎𝑎𝑛𝑛𝑏𝑏𝑚𝑚𝛽𝛽𝑚𝑚𝑒𝑒𝛼𝛼𝑛𝑛𝑥𝑥𝑒𝑒𝛽𝛽𝑚𝑚𝑦𝑦 ∙ 𝑙𝑙 + 𝜆𝜆𝐶𝐶1, 𝑙𝑙 =  1/(𝛼𝛼𝑛𝑛2 +  𝛽𝛽𝑚𝑚2 )  
𝑣𝑣 = −𝑎𝑎𝑛𝑛𝑏𝑏𝑚𝑚𝛼𝛼𝑛𝑛𝑒𝑒𝛼𝛼𝑛𝑛𝑥𝑥𝑒𝑒𝛽𝛽𝑚𝑚𝑦𝑦 ∙ 𝑙𝑙 + 𝜆𝜆𝐶𝐶2              𝑛𝑛,𝑚𝑚 = 1, 2

. (53)
 

In this case the pressure will be 𝑃𝑃 = 𝜇𝜇[ 𝐹𝐹 + 𝜆𝜆2(𝐶𝐶12 + 𝐶𝐶22) + 𝐶𝐶0].
 𝒃𝒃) 𝐶𝐶2 = 0,𝐶𝐶22 < 4𝐶𝐶. Then  𝑘𝑘1 > 0, 𝑘𝑘2 < 0  and  𝑎𝑎(𝑥𝑥) = 𝑎𝑎𝑛𝑛𝑒𝑒𝛼𝛼𝑛𝑛𝑥𝑥,𝛼𝛼1,2 =  0,5�𝐶𝐶1 ± �𝑘𝑘1 �,

𝑏𝑏(𝑦𝑦) = 𝑏𝑏1𝑐𝑐𝑐𝑐𝑐𝑐√𝐶𝐶𝑦𝑦 +  𝑏𝑏2𝑠𝑠𝑠𝑠𝑠𝑠√𝐶𝐶𝑦𝑦 ;   𝑎𝑎𝑛𝑛  , 𝑏𝑏𝑚𝑚 are arbitrary constants;  𝑛𝑛,𝑚𝑚 = 1, 2.   
Then  𝑎𝑎′′ = 𝛼𝛼𝑛𝑛2𝑎𝑎, 𝑏𝑏′′ = −𝐶𝐶𝐶𝐶  ș𝑖𝑖  𝑙𝑙 =  1/(𝛼𝛼𝑛𝑛2 − 𝐶𝐶). It is easy to verify that if the constants 

that if the constants C and 𝐶𝐶1 are different from zero, then also 𝛼𝛼𝑛𝑛2 − 𝐶𝐶 ≠ 0. In this case we 
obtain the following solutions: 

 

 � 𝑢𝑢 = 𝑎𝑎𝑛𝑛√𝐶𝐶𝑒𝑒𝛼𝛼𝑛𝑛𝑥𝑥(𝑏𝑏2𝑐𝑐𝑐𝑐𝑐𝑐√𝐶𝐶𝑦𝑦 −  𝑏𝑏1𝑠𝑠𝑠𝑠𝑠𝑠√𝐶𝐶𝑦𝑦)𝑙𝑙 + 𝜆𝜆𝐶𝐶1, 𝑙𝑙 =  1/(𝛼𝛼𝑛𝑛2 − 𝐶𝐶)  
𝑣𝑣 = −𝑎𝑎𝑛𝑛𝛼𝛼𝑛𝑛𝑒𝑒𝛼𝛼𝑛𝑛𝑥𝑥(𝑏𝑏1𝑐𝑐𝑐𝑐𝑐𝑐√𝐶𝐶𝑦𝑦 +  𝑏𝑏2𝑠𝑠𝑠𝑠𝑠𝑠√𝐶𝐶𝑦𝑦)𝑙𝑙                𝑛𝑛 = 1, 2

. (54) 

 

𝒄𝒄) 𝐶𝐶1 = 0 și 4𝐶𝐶 < −𝐶𝐶12.  Then  𝑘𝑘1 < 0, 𝑘𝑘2 > 0  and  𝑎𝑎(𝑥𝑥) = 𝑎𝑎1𝑐𝑐𝑐𝑐𝑐𝑐√−𝐶𝐶𝑥𝑥 +  𝑎𝑎2𝑠𝑠𝑠𝑠𝑠𝑠√−𝐶𝐶𝑥𝑥 ,
𝑏𝑏(𝑦𝑦) = 𝑏𝑏𝑚𝑚𝑒𝑒𝛽𝛽𝑚𝑚𝑦𝑦; 𝛽𝛽1,2 = 0,5�𝐶𝐶2  ± �𝑘𝑘2 �; 𝑎𝑎𝑛𝑛, 𝑏𝑏𝑚𝑚 − arbitrary const. ;𝑛𝑛,𝑚𝑚 = 1, 2   

Then  𝑎𝑎′′ = 𝐶𝐶𝐶𝐶, 𝑏𝑏′′ = 𝛽𝛽𝑚𝑚2 𝑏𝑏  and  𝑙𝑙 =  1/(𝐶𝐶 + 𝛽𝛽𝑚𝑚2 ). It is easy to verify that if C and 𝐶𝐶2 are 
different from zero then also 𝐶𝐶 + 𝛽𝛽𝑚𝑚2  ≠ 0. In this case we obtain the following solutions: 

 

 �
 𝑢𝑢 = 𝑏𝑏𝑚𝑚𝛽𝛽𝑚𝑚𝑒𝑒𝛽𝛽𝑚𝑚𝑦𝑦(𝑎𝑎1𝑐𝑐𝑐𝑐𝑐𝑐√−𝐶𝐶𝑥𝑥 + 𝑎𝑎2𝑠𝑠𝑠𝑠𝑠𝑠√−𝐶𝐶𝑥𝑥)𝑙𝑙 , 𝑙𝑙 = 1/(𝐶𝐶 + 𝛽𝛽𝑚𝑚2 )  

𝑣𝑣 = −𝑏𝑏𝑚𝑚√−𝐶𝐶𝑒𝑒𝛽𝛽𝑚𝑚𝑦𝑦�𝑎𝑎2𝑐𝑐𝑐𝑐𝑐𝑐√−𝐶𝐶𝑦𝑦 −  𝑎𝑎1𝑠𝑠𝑠𝑠𝑠𝑠√𝐶𝐶𝑦𝑦�𝑙𝑙 + 𝜆𝜆𝐶𝐶2;                𝑛𝑛 = 1, 2
. (55) 

 

In case the solutions (54) and (55) on determine the function G with the (16) and the pressure 
P with the formula (17). 

Note. The case k1 < 0 and k2 < 0 is impossible because it only takes place if 𝐶𝐶2
2 < 4𝐶𝐶 < −𝐶𝐶12.  

In the case k1 = 0 and k2 = 0 we obtain solutions (53) with 𝑎𝑎𝑛𝑛 = 0,5𝐶𝐶1, 𝑏𝑏𝑚𝑚 =  0,5𝐶𝐶2. 
If 𝛼𝛼22 = 𝛼𝛼12  and  𝛽𝛽22 = 𝛽𝛽12  then  𝐶𝐶1 = 𝐶𝐶2 = 0. But in this case we have 𝑎𝑎′′ = 𝐶𝐶𝐶𝐶, 𝑏𝑏′′ =  −𝐶𝐶𝐶𝐶  and 
the expression from the square brackets of the equation (52) is equal to zero, that is (52) 
becomes a false identity. 
We now return to equation (51) in the case where T' is not constant. In this case we proceed 
in the same way as in case a) above and take 𝑎𝑎(𝑥𝑥) = 𝑎𝑎𝑛𝑛𝑒𝑒𝛼𝛼𝑛𝑛𝑥𝑥, 𝑏𝑏(𝑦𝑦) = 𝑏𝑏𝑚𝑚𝑒𝑒𝛽𝛽𝑚𝑚𝑦𝑦.  We have the 
following equation for the determination of the function T: 

 

𝑎𝑎𝑛𝑛𝑏𝑏𝑚𝑚𝑒𝑒𝛼𝛼𝑛𝑛𝑥𝑥+𝛽𝛽𝑚𝑚𝑦𝑦 ⋅ 𝑇𝑇″ + 𝑇𝑇′ =
1

  (𝛼𝛼𝑛𝑛2 + 𝛽𝛽𝑚𝑚2 ). 
 

This equation has the form of equation (40) studied previously. Solving it in the same 
way as in the case of equation (40) we will obtain solutions of the form (42), replacing C1  

with 𝛼𝛼𝑛𝑛, 𝐶𝐶2 with 𝛽𝛽𝑚𝑚 and  𝛼𝛼 = 𝑎𝑎𝑛𝑛𝑏𝑏𝑚𝑚. 
 

5. Results and Discussion  
The present paper contains three proven theorems, as well as various examples and 

particular examined cases. Applying Theorem 1, we can find various solutions, where the 
velocity components represent the imaginary and real parts of a differentiable function of a 
complex variable. Theorem 2 allows us to determine solutions, where the velocity 
components are expressed by the partial derivatives of the solutions of Laplace's equation of 
a special form. It is to be mentioned that these theorems give us solutions that do not depend 
on the viscosity parameter λ. 
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In the present work, an original method elaborated by the author is presented, with the help 
can be determined of which solutions of the system (1), in which the viscosity parameter 
participates explicitly. This method is presented in theorem 3 for obtaining a series of 
solutions of the Navier-Stokes equations in which the viscosity coefficient λ participates 
explicitly. The application of this method to obtain different solutions of system (1) is 
presented in cases 1-5 following the proof of theorem 3. 

In the current article a lot of solutions of the Navier-Stokes equations are determined 
by the system (1), both of general form - solutions (2), (11), as well as the exact solutions - 
(9), (10), (12), (22), (23), (24), (28), (29), (30)-(36), (42), (48), (52)-(55). Starting with the solution 
(28) onwards, in all the obtained solutions, their dependence on the viscosity parameter λ is 
explicitly indicated. We would also like to mention that the main results presented in this 
paper were reported and discussed in the following international conferences: the symposium 
UTM 2020, conference MITRE 2021 and CAIM 2022. The obtained results were presented in 
the following theses of these conferences: [14], [15] and [16]. 

 

6. Conclusions 
In this paper a lot of solutions of the Navier-Stokes equations are determined both of 

general form as well as the exact solutions. Different constants participate in the expressions 
of the obtained solutions, the values of which can be determined based on the initial 
conditions and the boundary conditions of the examined physical problems.  

For example, the solutions (33) or (36)
 
 are solutions of the plane flow problem type 

Poiseuille or Couette ([17]). Thus, for the plane flow of Poiseuille type, we have that for the 
channel section of diameter 2h, a component of the velocity is equal to zero, for example v = 
0, and the boundary conditions are of the form u(h) = u(-h) = 0. From here we find that c1 = 0, 

c2 = - (h2c)/2λ, and c > 0, since the pressure inside the channel decreases. For the Couette type 
flow we also have v = 0 and the following boundary conditions: u(h) = u0, u(-h) = 0. Then c1 = 
u0/2h,  
c2 = (h2c)/2λ + u0/2 ([17]). 

In the research carried out here, the rotor (vortex) of the examined flow is of special 
importance, namely the expression 𝜑𝜑 = 𝑢𝑢𝑦𝑦 − 𝑣𝑣𝑥𝑥. Thus, if we can experimentally or 
theoretically determine the rotor of the flow (is it null, or constant, or has a particular shape), 
then we can apply the results of theorems 1, 2, or 3, demonstrated above, to determine the 
components of the flow velocity and the pressure created.  
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