
Technical Scientific Conference of Undergraduate, Master, PhD students, Technical University of Moldova

Chisinau, Republic of Moldova, April 5-7, 2023, Vol. I

- 233 -

DESIGN OF DOMAIN SPECIFIC LANGUAGE FOR ASTROLOGICAL

CHARTS GENERATION - ALAKIRQL

Alexandru ANDRIEȘ1, Georgeana GLOBA1,

Arteom KALAMAGHIN1*, Dionisie SPATARU1

1Departamentul Ingineria Software și Automatică; Facultatea Calculatoare, Informatică şi Microelectronică;

Universitatea Tehnică a Moldovei; o. Chișinău; Republica Moldova

*Corresponding author: Arteom Kalamaghin, arteom.kalamaghin@isa.utm.md

Scientific coordinators: Mariana CATRUC, superior lecturer, UTM; Irina COJUHARI, assoc. prof. , UTM

Abstract. This article represents an analysis of the definition of a Domain-Specific Language for

work in the field of astrology - AlakirQL. The article's goal is to describe the functionality,

specifications, semantic and grammatical features of the AlakirQL, as well as the lexer

implementation progress, by analyzing both technical and non-technical subjects.

Keywords: Domain-Specific Language, Astrology, formal language, grammar, semantics.

 Introduction

 DSLs (Domain-Specific Languages) are becoming increasingly popular tools for solving

problems in areas where advanced scripting is not required. Programming provides a wide range of

possibilities to create features, solve everyday problems, or routines. Since DSLs are widespread in

this day and age, the ability to create automated alternatives for otherwise labored assignments has

become effortless in any area of work [1].

In some cases, constructing a domain-specific language from scratch could be a better solution

than using any other existent substitutes, since it might allow for a clearer expression of both

algorithmic questions and answers in cases where they are regularly encountered. In addition, the

improvement of tools has made this task even easier than before.

Domain description

Astrology represents the multitude of spiritual practices that claim to have the ability to

discover details about people's lives and some global events based on the positions of different

extraterrestrial objects [2].

Nowadays, the most popular application is composition of birth charts. Astrologers use the

birth chart to make predictions about future events and to provide guidance for personal growth and

development. The composition of the Birth Chart and the provision of tabular data related to this

notion will be the primary problem with which the AlakirQL will be concerned. Some web resources

provide solutions that implement this service, however, we believe that our approach has two big

advantages over this form of service delivery. First of all, local use: a web-application requires

personal data and contact information to provide results; when used locally your data does not leave

the device. Automation: the implementation of control and data structures for repetitive flow and

similar data storing will allow users to process large amounts of information more easily, speeding

up routine work. It is also worth mentioning another approach to data formatting: special output and

reading modules will allow users to save processed data to files in order to be able to return to them

in the future.

Conferinţa Tehnico-Ştiinţifică a Studenţilor, Masteranzilor și Doctoranzilor, Universitatea Tehnică a Moldovei

Chișinău, Republica Moldova, 5-7 aprilie 2023, Vol. I

- 234 -

 Grammar

 What follows is a definition of the grammar in a form that will help us easily construct a parse

tree for a sample piece of code – G = (S, P, VN, VT), where: S – the start token; P – a collection of

production rules; VN – lists non-terminals; VT – a list of terminal symbols.

In Table I are listed meta-notations, understanding of which is essential while reading the

grammar specified below.

Table 1.

Meta-notation

Notation Denotation

<foo>

foo

[x]

x*

x+,
|

for non-terminals

for terminal symbols (a token or a part of a token)

indicates zero or more occurrences of x (is optional; note that brackets in quotes are terminals)

indicates zero or more occurrences of x

separated by comma list of one or more x’s

separates alternatives

S = { <program> }; VT = { 0..9, A..Z, a..z, WHILE, DECLARE, CONST, (datatype names),

(built-in function names), (operators) , _ ,) , (, [,] , { , } , deg, min, sec, year, month, day, hour,

minute, second, tables, " , ; }; VN = { ⟨block⟩, ⟨directive⟩, ⟨var_decl⟩, ⟨declarator⟩, ⟨type⟩, ⟨expr⟩,

⟨statement⟩, ⟨location⟩, ⟨method_call⟩, ⟨method_name⟩, ⟨bin_op⟩, ⟨literal⟩, ⟨id⟩, ⟨alpha_num⟩, ⟨alpha⟩,

⟨digit⟩, ⟨arith_op⟩, ⟨rel_op⟩, ⟨eq_op⟩, ⟨int_literal⟩, ⟨decimal_literal⟩, ⟨string_literal⟩, ⟨angle_literal⟩,

⟨dt_literal⟩ } ; P =

{ ⟨program⟩
⟨block⟩

⟨directive⟩

→ ⟨directive⟩*

→ ‘{‘ ⟨directive⟩* ‘}‘

→ ⟨var_decl⟩ | ⟨statement⟩ ;

⟨var_decl⟩
⟨declarator⟩

⟨type⟩

→ ⟨declarator⟩ ⟨id⟩+, [= ⟨expr⟩+,] | [= ‘[‘ ⟨expr⟩+, ‘]‘]

→ CONST | DECLARE

→ INT | STRING | ANGLE | DATETIME | CHART

⟨expr⟩
⟨statement⟩

→ ⟨location⟩ | ⟨method_call⟩ | ⟨literal⟩ | ‘(‘ ⟨expr⟩ ‘)‘ | ⟨expr⟩ ⟨bin_op⟩ ⟨expr⟩
→ ⟨location⟩+, = ⟨expr⟩+, | ⟨method_call⟩ | WHILE ⟨expr⟩ ⟨block⟩

⟨location⟩ → ⟨id⟩ | ⟨id⟩ ‘(‘ ⟨int_literal⟩ ‘)‘ | ⟨id⟩.⟨location⟩
⟨method_call⟩

⟨method_name⟩
→ ⟨method_name⟩ ([⟨expr⟩+,])

→ BUILD_CHART | HTABLE_DATA | WRITE_TO_FILE | PRINT

⟨bin_op⟩
⟨literal⟩

→ ⟨arith_op⟩ | ⟨rel_op⟩ | ⟨eq_op⟩
→ ⟨int_literal⟩ | ⟨string_literal⟩ | ⟨angle_literal⟩ | ⟨dt_literal⟩

⟨id⟩
⟨alpha_num⟩

→ ⟨alpha⟩ ⟨alpha_num⟩∗

→ ⟨alpha⟩ | ⟨digit⟩
⟨alpha⟩
⟨digit⟩

⟨arith_op⟩
⟨rel_op⟩
⟨eq_op⟩

→ a | b | ... | z | A | B | ... | Z | _

→ 0 | 1 | 2 | ... | 9

→ + | - | ∗ | /

→ < | > | <= | >=

→ == | !=

⟨int_literal⟩
⟨decimal_literal⟩

⟨string_literal⟩
⟨angle_literal⟩

⟨dt_literal⟩

→ ⟨decimal_literal⟩
→ ⟨digit⟩ ⟨digit⟩∗

→ " ⟨alpha_num⟩∗ "

→ ‘ < ‘ ⟨int_literal⟩ ‘, ‘ ⟨int_literal⟩ ‘, ‘ ⟨int_literal⟩ ‘ > ‘

→ "D⟨int_literal⟩-⟨int_literal⟩-⟨int_literal⟩|⟨int_literal⟩:⟨int_literal⟩" }

Technical Scientific Conference of Undergraduate, Master, PhD students, Technical University of Moldova

Chisinau, Republic of Moldova, April 5-7, 2023, Vol. I

- 235 -

Some specifications

 An AlakirQL program is a sequence of directives that can be divided into two groups.

Variables are initiated in the global scope (the only valid one) during field declarations and can be

accessed by all methods in the program. Statements deal with processing of data stored in variables

and represented by literals.

The AlakirQL keywords (PRINT, WHILE etc.) are case-insensitive, yet they are frequently

expressed in all capitals; variable names are case-sensitive. White space must be used to separate

keywords and identifiers. Any lexical tokens may be separated by white space. One or more spaces,

tabs, page and line breaks, and comments are all examples of white space. Sequences starting with an

alphabetic character or an underscore form a token with the sequence of characters following it.

Numbers in AlakirQL are 64 bit signed floating point num-s. An ⟨alpha_num⟩ is any printable

ASCII character, as well as some special characters for zodiac signs. AlakirQL does not fully support

data structures, but nevertheless uses a field specification access approach for ANGLE, DATE and

CHART variables. ANGLE and DATE literals are regular expressions, so they have to be typed in a

proper form to be successfully parsed.

Lexing

Lexical analysis in computer science refers to the process of transforming a series of

characters into a sequence of lexical tokens (strings with an assigned and thus identified meaning).

Almost always, parsing is divided into two smaller tasks. A lexer creates a potentially infinite

sequence of tokens for use in the later stages of the parsing process [3]. The lexing module's operation

is straightforward: when it traverses a file, it looks ahead. It attempts to assign meaning to the next

word by checking in the following order: character, keyword, boolean, date literal, numeric literal,

string literal, identifier, and so on. Further, all tokens are added to the list. The complexity of this

process is LL(2). Due to space constraints, it is impossible to list all of the details; however, you can

fully evaluate the progress by visiting our GitHub repository:

https://github.com/prenaissance/alakirql.

Parse tree

A parse tree is a rooted tree that represents the syntactic structure of a string using some

context-free grammar. The term parse tree is primarily used in computational linguistics. For the

following simple valid code snippet a parse tree was generated: DECLARE time = “D2001-01-

01|00:00”; DECLARE data = HTABLE_DATA(time, “south”, 11, “0N”); PRINT(data);

Figure 1. Parse Tree

Conferinţa Tehnico-Ştiinţifică a Studenţilor, Masteranzilor și Doctoranzilor, Universitatea Tehnică a Moldovei

Chișinău, Republica Moldova, 5-7 aprilie 2023, Vol. I

- 236 -

Conclusion

Careful work at the stage of defining specifications and grammar allows to create a solid base

for further development and expansion of the project. Stick to the REPL model and syntax

simplification vector by introducing dynamic typing when declaring variables, for example; aim to

win over the mass user. Hopefully, the product's final version will meet all expectations and become

a useful tool in the field of astrology.

 Sources

1. VOELTER, M. DSL Engineering: Designing, Implementing and Using Domain-Specific

Languages. CreateSpace Independent Publishing Platform, 2013.

2. Oxford Dictionary of English. Oxford University Press.

3. DOMINUS, M.J. , Higher-Order Perl: Transforming Programs with Programs. Morgan

Kaufmann, 2005.

