6" International Conference on Microelectronics and Computer Science, Chisindu, Republic of Moldova, October 1-3, 2009

Analysis and Design of a Specialized Pipeline
for Numerical Algorithms Implementation

Viorel CARBUNE
Technical University of Moldova
sirius.c-032@mail.ru

Sergiu ZAPOROJAN
Technical University of Moldova
zaporojan_s@yahoo.com

Abstract. The numerical algorithms often bring a lot of elementary calculations which involve the fixed-point multiply,
add and subtract operations. Many of these numerical and signal processing algorithms require repetitive use of multiply
and accumulate operation. The contribution of the paper is to present the analysis and design of an FPGA-based
specialized pipeline, in order to develop flexible (co)processors for applications in the field of numerical analysis and
digital signal processing. Essentially, the paper focuses on some details of the analysis and design of the proposed pipeline
structure. In particular, provided analysis considers the bus traffic utilization in the system. The obtained results are
plotted for some specific parameters. The simulation results are also drawn. For this reason, the Altera Quartus software

was used.

Index Terms — DSP, FPGA, multiply and accumulate operation, numerical algorithm, pipelining.

[. INTRODUCTION

In scientific computation and signal processing (DSP),
high-performance is strictly important. Essentially, these
computations can be classified into compute-bound and
input/output-bound computations. In a compute-bound
calculation the number of arithmetic operations is much
larger that the number of input and output elements (e.g.
matrix multiplication). The computational tasks involved
by algorithms in numerical analysis and DSP are typical of
the compute-bound class. In addition, many algorithms in
numerical computing and digital signal processing have a
high regularity [1, 2, 6]. Hence, numerical methods with
these characteristics are quite suitable for a specialized
treatment.

To address the performance barrier of scientific
computation and DSP, a standard approach in the past has
been to increase the operating frequency of the processor.
Other well known approaches to improve the performance
include the use of additional processors, the use of
specialized programmable processors or through the use of
FPGA-based processor architectures. Adding additional
devices to a system can be costly, especially under the
requirements for system reliability.

On the other hand, modern FPGA circuits, with their
ability to integrate multiple (co)processors in a single
device, can provide advanced solutions to accelerate the
performance. Another key advantage of modern FPGAs is
the ability to adapt and quickly respond to changing
application requirements. As a direct result of the above
capabilities, FPGAs can be used to develop highly
performance architectures for numerical analysis and DSP
applications.

A new category of very high-performance programmable
logic devices has been developed to address the un-met
needs of system designers. The MathStar Field
Programmable Object Array (FPOA) is an example of this
category, offering many very useful capabilities [7].
Because of its high-performance, the FPOA is useful in a
wide range of applications, including those in the areas of

241

machine vision, medical imaging and image processing.
These applications are built around extremely fast
specialized building blocks.

The goal of this paper is to present the analysis and
design of an FPGA-based specialized pipeline, in order to
develop flexible (co)processors for numerical applications.
First of all, background section focuses on the features and
basics in the field. Then, basic sections are presented. At
first, here we discuss some details of the analysis and
design of the pipeline. Mainly, our analysis considers the
bus traffic utilization in the system. Finally, we present
simulation results and conclude the work in the last section.

II. BACKGROUND

The numerical algorithms often bring a lot of elementary
calculations. Most of these elementary calculations involve
the fixed-point multiply, add and subtract operations.
Essentially, the differences between conventional and
special-purpose processors involve optimization for
specific arithmetic operations and data handling. Such
processors are optimized to efficiently execute optimized
operations which allow the efficient implementation of
numerical processing algorithms. The input signals can be
audio, image-based or simply numerical.

Many of these specialized numerical and DSP
algorithms require repetitive use of the following operation
group:

A=BxC+D 1)

This operation group is clearly a multiply and an
addition also known as a multiply and accumulate (MAC).
This operation is so common that DSP processors have
been optimized to implement one or more MAC operations
during each processor instruction cycle. Data handling has
also been given significant design attention. Extra buses
have been added to processors to allow them to more
efficiently handle internal and external data transfers.
Pipelines and additional data paths and registers have also
been added to speed up arithmetic operations and data
transfers [3, 4].

Fore example, the fast Fourier transform (FFT) is one

6" International Conference on Microelectronics and Computer Science, Chisindu, Republic of Moldova, October 1-3, 2009

DSP building block that frequently requires high speed.
The FFT can be factored in a variety of different ways.
Each way results in a different algorithm. The most
common algorithm is the Cooley-Tukey one, which
recursively factors each N point transform into a pair of
N/2 point transforms combined by a "butterfly" operation
until the reduced transforms are each a single sample long.
Each butterfly operation consists of a complex multiply by
a "twiddle factor" (that is, a phase rotation of the input)
followed by a two-point FFT, which is just a complex sum
and difference [1, 6]. The regularity of the algorithm and
data sequencing is ideal for a high-performance
implementation.

Basically, special-purpose processors fall into two main
categories based on the way they represent numerical
values and implement numerical operations internally.
These two main formats are well known: fixed point and
floating point. The differences between fixed and floating
point processors are significant enough that they require
very different internal implementation, instruction sets and
approaches for algorithm implementation. Fixed point
processors represent and manipulate numbers as integers.
Floating point processors primarily represent numbers in
floating point format, although they can also support
integer representation and calculations [5, 8].

Developing an understanding of which applications are
appropriate for floating point processors is very important.
The inherently large dynamic range available in floating
point designs means that dynamic range limitations can be
practically ignored in a practical design. Floating point
processors can implement both floating point and integer
operations, making them more flexible. In the same time,
floating point processors tend to be more expensive
because they implement more complexity and have wider
buses (32 or 64 bits). On the other hand, floating point
processors tend to be more high level language friendly.
Floating point capability is appropriate in systems where
gain coefficients are changing with time, or the coefficients
have large dynamic ranges. Thus, relative ease of
development and schedule advantage are being traded off
against higher cost and hardware complexity when
considering floating point design implementations [3].

Conventional floating-point implementation treats each
add or multiply operation as a stand-alone floating-point
operation requiring normalized inputs and outputs. When
these basic operations are assembled into more complicated
operators, the intermediate normalize and de-normalize
operations are often unnecessary and represent a
considerable amount of wasted hardware. With a hybrid
approach [1], it is possible to take larger pieces of the
algorithm and treat them as fixed-point blocks that operate
on the mantissas of the input data, renormalizing after
several algorithm steps rather than after each elemental
operation. The input to the fixed-point operator has to be
de-normalized so that it shares a common exponent, and
the fixed-point operator must have enough extra bits to
allow for any combination of inputs without overflow.

Engineers targeting numerical computing to FPGA
circuits have traditionally using fixed-point arithmetic,
mainly because of the high cost associated with

implementing floating-point arithmetic. As mentioned
above, that cost comes in the form of increased circuit
complexity and often degraded maximum clock frequency.
Certain applications demand the dynamic range offered by
floating-point hardware but require speeds and circuit sizes
usually associated with fixed-point hardware.

To speed up the numerical arithmetic computation,
different pipelining techniques are being used. Most of
modern's arithmetic pipelines are designed to perform fixed
functions. These arithmetic units perform fixed-point and
floating-point operations separately [4].

The remainder of this paper focuses on some details of
the analysis and design of the FPGA-based specialized
pipeline. Next section presents a flexible pipeline structure
capable to meet numerical computing requirements. Some
details of its analysis are discussed.

III. THE PIPELINED STRUCTURE ANALYSIS

Depending on the function to be implemented, different
pipeline stages in an arithmetic unit require different
hardware logic. Since all arithmetic operations can be
implemented with the basic add and shifting operations, the
core arithmetic of stages require some form of hardware to
add and to shift. The arithmetic or logical shifts can be
easily implemented with shift registers. High-speed
addition requires either the use of a carry-propagation
adder which adds two numbers and produces an arithmetic
sum, or the use of a carry-save adder which adds three
input numbers and produces one sum output and a carry
output [4].

The proposed structure (fig.1) consists of pipeline stages,
three blocks of memory, an address counter CT, three FIFO
buffers, and a selector unit. The latter is introduced to
provide repetitive use of operands on line W. To implement
the pipeline stages of the fixed-point multiply, add and
subtract unit, we use the techniques proposed and described
in [9].

Fig.1. The pipeline structure

In general, the proposed structure is capable to execute
calculations acording to the equation:

R = Wan ® Aqu i Cmenq > (2)

mpxnq

where ® represents the Kronecker product; W, A and C
are fixed-point inputs, while R is the output of the pipeline.
It is obvious from equation (2), that this structure has the
ability not only to execute multiply and add/subtract
operations upon the scalar operands (e.g. MAC operation),
but is also able to perform matrix calculations. It should be

mentioned, that the Kronecker product, denoted by &, is

242

6" International Conference on Microelectronics and Computer Science, Chisindu, Republic of Moldova, October 1-3, 2009

an operation on two matrices of arbitrary size resulting in a
block matrix. It gives the matrix of the tensor product with
respect to a standard choice of basis. The Kronecker
product should not be confused with the usual matrix
multiplication which is an entirely different operation. So,
the above structure is flexible enough and can be
successfully used to implement various numerical
algorithms.

In order to provide the analysis of the above specialized
structure, we will denote the clock period by t. Then, we
can write: t. =Tcp =Tray =t. Next, the four stage

arithmetic pipeline will be considered.

Let now provide the analysis of the bus traffic utilization
when a calculation is running on our structure. Suppose
mxn is the size of matrix on input W, while pxq
indicates the size of matrix on input A. Then, the number
of operands needed to run a calculation on the pipeline is
given by relation

Nop = (mxn)ek, ®)
where, k represents the number of iteration loops.
Obviously, if k = (p x q), the equation (3) is written as

Nop =(mxn)e(pxq) “)
The total number of clock periods needed to execute the
calculation can be written as

Ntot =%9 (5)

where T, denotes the running time (full simulation time).

Evidently, to provide a complete bus traffic analysis both
pipeline and operation latencies should be considered. The
latency of pipeline is given by equation:

L = Nst X tpipe > (6)

pipe
where N denotes the number of stages in the pipeline.

On the other hand, the full latency of the calculation will
be written in the form:

L =Ter + Tram + 01X Trpo + Lpipe (7

operation
where n represents the number of columns in the matrix
(e.g. the number of operands in the FIFO buffer).

Taking into account the above notations, we can write
the equation to express the bus busy time:

Bhusy = Ter + Tram + kxn ®)

or
Bhusy =2xt+kxn, ©)]

and the equation to express the bus free time:

Bfree :kXNOP 'NOP +Nst tiipe' (10)
The calculation running time T,,, can be now written as
Tiot =Busy + Lpipe TkXNgp -Ngp . an

The above equations were used to construct the diagrams
of bus traffic using versus the number of iteration loops
(fig.2). It is obvious, that the bus free time is rising when
the number of loops also rises. Depending on the size of

243

n -parameter, the reducing of the bus traffic is different for
different values of n. As can be seen from fig.2, the
reducing of the bus traffic significantly speeds up fork =3
and n = 16. Figure 3 illustrates the same results but in
another form. It can be seen, that the bus free time is twice
bus busy time, for k =3 and n = 16.

Bus traffic

120
100

20

Bus free (n=4)

Bus free (n=8)

Time

60 = Bus free (n=16)
40 /
20 /

= =Bus busy (n=4)
== =Bus busy (n=8)

== =Bus busy (n=16)

1 2 3 Nr. of loops

Fig.2. Bus traffic versus number of loops

Bus traffic
160

140
120

100 —

Time

80

50 Bus free
W Bus busy
40
20 r I
,am B HRN
1 2 3 1 2 3 1 2 3 Nr. of loops
[| I
n=4 n=8 n=16

Fig.3. Bus traffic histograms

We fitted the design into a single Cyclone II family
FPGA from Altera. The design (fig.4) was created by using
Altera Quartus software.

Fig.4. The schematic design

Figure 5 represents the total logic elements used while
the FIFO buffer length changes from 4 to 16 words.

6" International Conference on Microelectronics and Computer Science, Chisindu, Republic of Moldova, October 1-3, 2009

Total logic elements

Number of elemrnts
240

235

230 /
225 /

220

Total logic elements
215
210

205 -+ - T T Buffer length
0 5 10 15 20

Fig.5. Hardware cost versus FIFO length

IV. SIMULATION RESULTS

To verify the above theoretical results, a lot of
simulations were performed. Figures 6-10 illustrate the
simulation diagrams for some cases. Figures 6 and 7
consider the calculation according equation (2) under
following conditions: m=2;n=2; p=2; q=3. The
matrices (12) and (13) have been used as inputs.

W—12A—123(12)
2><2_34’2><3_456

1 2 5 6 9 10
3 4 7 8 11 12

- 13
6713 14 17 18 21 22 (13)
15 16 19 20 23 24
2 4 7 10 12 16
6 8 13 16 20 24
4x6 = (14)

17 22 22 28 27 34
27 32 24 40 41 48

The output resulting matrix (14) was calculated in two
ways: first by loading entire matrix W into the FIFO buffer
(fig.6), and, then, by only loading a given line of that
matrix at a given time (fig.7). These cases are respectively
associated to equations (4), and (3).

£ Hatm T Al RECET 015m Intrval CiT slat nt
A e ®0m 160w 0w W0Us AN0m 400w WU0m Bl0m 70w HN0m
" Hame @i
]

bd [T hhhhhhhhhLELhhLhphLLL L LLLLLRLRLLOhRGL Ly
a, B S S T B T D S Ty S a2y *

Ba o T T s T Ej
a Cick
#H Bw Y 3 FE AR I S SO DR
o WA
b ro |7 I

Bo] R LR 1ot el (e {BR el) o e ey 0 S e 1 4

Fig.6. Loading entire matrix W

| Mantee Tivm B 480 e 4 | Prreae RT7 62 ne Intsreat 19762 ne St Eral

% b e EA0m MOBw B0 4000n mn.nm S0l Badlns Tl GO

A N i

Ed nnnnnnnnnnnnnnnnnnnnnnnr ananannannnnnnnr

&, TS E DTS ()

IX?:K‘X‘:K XSI‘X?IWX*XX L]

= L LI

» KTy ;] Y, 3
EB}WMHW

Fig.7. Loading the matrix W line by line

In fig.8 no loops are used (k = 1) and the FIFO on line
W is only used. This mode can be used to calculate FFT.
The simulation result of the multiply and add operation is

given in fig.9. Both the looping and FIFO on the line W
have been used. Finally, fig.10 presents a test for multiply
operation (the loops have been used).

o PP WP W0 100 10w X0 M40 00w RN0w KGDw SN0 MO0 00 W0 WA0m GNOMW BTN
1% 5

T Ve Toa b W o] ot A et e Sumt B [
L]
A

n u T
o wfC L B A b) el A s A e s e L R e e e e e R R e |

F1g 8. Calculation with no loop

o[| Pt Wi vineos LT E [It (T

e woe emew mgpe amom smpe

i
bed (50

nnnnnnnnAnnnAnnAnAnnnainnAnnnannnnnAnnannnnnnn

M0 WO0m GO0 TN B00M BN0m %00

T

AN N T, L A

Fi ig.9. Multiply-Add w1th loop

SRS SR G R R

o[| Pt Cr vineos (eI E [It (T

an e Wm0 nGie Gmom emie

i

lAnnnnnannAnnAANnnAANn J'I.[I"L"_"J"I.I"IJ'I.I"I.I" AR

M0 WO0m GO0 TN B00M BN0m %00

A EE T OEEE e

OIXTEETIEY 36 L AL LR IRt L
Fig.10. Multiply with loop

In all these cases the processor design was running at 50
MHz. The simulation results confirmed the theoretical
results presented in the previous section.

REFERENCES

[1T R. Andraka. How to build ultra-fast floating-point
FFTs in FPGAs, Retrieved April 30, 2007 from
http://www.dspdesignline.com

O. Brudaru, G. M. Megson, D. Galea. Systolic
Algorithms in Numerical Analysis. Editura Academiei
Romane, 1996.

R. Cofer, B. Harding. Fixed-Point DSP and Algorithm
Implementation, Retrieved October 25, 2006 from
http://www.dspdesignline.com

K. Hwang. Advanced computer architecture, McGraw-
Hill, 1993.

[5] S. M. Mueller, W. J. Paul. Computer architecture:
complexity and correctness. Springer, 2000.

L. Rabiner, B. Gold. The theory and applications of
digital signal processing), 1978 (In Russia).

S. Riley. How to use Field-Programmable Object
Arrays in image processing, Retrieved June 27, 2007
from http://www.pldesignline.com

W. Stallings. Computer organization and architecture:
designing for performance, 4-th edition. Prentice Hall,
1996.

S. Zaporojan, V. Moraru, V. Gisca. The Special
Purpose Pipeline Arithmetic Units. Buletinul stiintific
al Universitatii “Politehnica” din Timisoara. Seria
Automatica si Calculatoare. Special Issue Dedicated to
third int. conf. CONTI’98, Timisoara, Romania,
Oct.29-30, 1998. V.43 (57), N.4, pp.238-245.

(2]

244

