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I. INTRODUCTION 
In scientific computation and signal processing (DSP), 

high-performance is strictly important. Essentially, these 
computations can be classified into compute-bound and 
input/output-bound computations. In a compute-bound 
calculation the number of arithmetic operations is much 
larger that the number of input and output elements (e.g. 
matrix multiplication). The computational tasks involved 
by algorithms in numerical analysis and DSP are typical of 
the compute-bound class. In addition, many algorithms in 
numerical computing and digital signal processing have a 
high regularity [1, 2, 6]. Hence, numerical methods with 
these characteristics are quite suitable for a specialized 
treatment. 

To address the performance barrier of scientific 
computation and DSP, a standard approach in the past has 
been to increase the operating frequency of the processor. 
Other well known approaches to improve the performance 
include the use of additional processors, the use of 
specialized programmable processors or through the use of   
FPGA-based processor architectures. Adding additional 
devices to a system can be costly, especially under the 
requirements for system reliability.  

On the other hand, modern FPGA circuits, with their 
ability to integrate multiple (co)processors in a single 
device, can provide advanced solutions to accelerate the 
performance. Another key advantage of modern FPGAs is 
the ability to adapt and quickly respond to changing 
application requirements. As a direct result of the above 
capabilities, FPGAs can be used to develop highly 
performance architectures for numerical analysis and DSP 
applications.  

A new category of very high-performance programmable 
logic devices has been developed to address the un-met 
needs of system designers. The MathStar Field 
Programmable Object Array (FPOA) is an example of this 
category, offering many very useful capabilities [7]. 
Because of its high-performance, the FPOA is useful in a 
wide range of applications, including those in the areas of 

machine vision, medical imaging and image processing. 
These applications are built around extremely fast 
specialized building blocks. 

The goal of this paper is to present the analysis and 
design of an FPGA-based specialized pipeline, in order to 
develop flexible (co)processors for numerical applications. 
First of all, background section focuses on the features and 
basics in the field. Then, basic sections are presented. At 
first, here we discuss some details of the analysis and 
design of the pipeline. Mainly, our analysis considers the 
bus traffic utilization in the system. Finally, we present 
simulation results and conclude the work in the last section.  

II. BACKGROUND 
The numerical algorithms often bring a lot of elementary 

calculations. Most of these elementary calculations involve 
the fixed-point multiply, add and subtract operations. 
Essentially, the differences between conventional and 
special-purpose processors involve optimization for 
specific arithmetic operations and data handling. Such 
processors are optimized to efficiently execute optimized 
operations which allow the efficient implementation of 
numerical processing algorithms. The input signals can be 
audio, image-based or simply numerical.  

Many of these specialized numerical and DSP 
algorithms require repetitive use of the following operation 
group:  

      A = B×C + D   (1) 
 

This operation group is clearly a multiply and an 
addition also known as a multiply and accumulate (MAC). 
This operation is so common that DSP processors have 
been optimized to implement one or more MAC operations 
during each processor instruction cycle. Data handling has 
also been given significant design attention. Extra buses 
have been added to processors to allow them to more 
efficiently handle internal and external data transfers. 
Pipelines and additional data paths and registers have also 
been added to speed up arithmetic operations and data 
transfers [3, 4]. 

Fore example, the fast Fourier transform (FFT) is one 
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DSP building block that frequently requires high speed. 
The FFT can be factored in a variety of different ways. 
Each way results in a different algorithm. The most 
common algorithm is the Cooley-Tukey one, which 
recursively factors each N point transform into a pair of 
N/2 point transforms combined by a "butterfly" operation 
until the reduced transforms are each a single sample long. 
Each butterfly operation consists of a complex multiply by 
a "twiddle factor" (that is, a phase rotation of the input) 
followed by a two-point FFT, which is just a complex sum 
and difference [1, 6]. The regularity of the algorithm and 
data sequencing is ideal for a high-performance 
implementation. 

Basically, special-purpose processors fall into two main 
categories based on the way they represent numerical 
values and implement numerical operations internally. 
These two main formats are well known: fixed point and 
floating point. The differences between fixed and floating 
point processors are significant enough that they require 
very different internal implementation, instruction sets and 
approaches for algorithm implementation. Fixed point 
processors represent and manipulate numbers as integers. 
Floating point processors primarily represent numbers in 
floating point format, although they can also support 
integer representation and calculations [5, 8]. 

Developing an understanding of which applications are 
appropriate for floating point processors is very important. 
The inherently large dynamic range available in floating 
point designs means that dynamic range limitations can be 
practically ignored in a practical design. Floating point 
processors can implement both floating point and integer 
operations, making them more flexible. In the same time, 
floating point processors tend to be more expensive 
because they implement more complexity and have wider 
buses (32 or 64 bits). On the other hand, floating point 
processors tend to be more high level language friendly. 
Floating point capability is appropriate in systems where 
gain coefficients are changing with time, or the coefficients 
have large dynamic ranges. Thus, relative ease of 
development and schedule advantage are being traded off 
against higher cost and hardware complexity when 
considering floating point design implementations [3].  

Conventional floating-point implementation treats each 
add or multiply operation as a stand-alone floating-point 
operation requiring normalized inputs and outputs. When 
these basic operations are assembled into more complicated 
operators, the intermediate normalize and de-normalize 
operations are often unnecessary and represent a 
considerable amount of wasted hardware. With a hybrid 
approach [1], it is possible to take larger pieces of the 
algorithm and treat them as fixed-point blocks that operate 
on the mantissas of the input data, renormalizing after 
several algorithm steps rather than after each elemental 
operation. The input to the fixed-point operator has to be 
de-normalized so that it shares a common exponent, and 
the fixed-point operator must have enough extra bits to 
allow for any combination of inputs without overflow. 

Engineers targeting numerical computing to FPGA 
circuits have traditionally using fixed-point arithmetic, 
mainly because of the high cost associated with 

implementing floating-point arithmetic. As mentioned 
above, that cost comes in the form of increased circuit 
complexity and often degraded maximum clock frequency. 
Certain applications demand the dynamic range offered by 
floating-point hardware but require speeds and circuit sizes 
usually associated with fixed-point hardware.  

To speed up the numerical arithmetic computation, 
different pipelining techniques are being used. Most of 
modern's arithmetic pipelines are designed to perform fixed 
functions. These arithmetic units perform fixed-point and 
floating-point operations separately [4]. 

The remainder of this paper focuses on some details of 
the analysis and design of the FPGA-based specialized 
pipeline. Next section presents a flexible pipeline structure 
capable to meet numerical computing requirements. Some 
details of its analysis are discussed. 

III. THE PIPELINED STRUCTURE ANALYSIS 
Depending on the function to be implemented, different 

pipeline stages in an arithmetic unit require different 
hardware logic. Since all arithmetic operations can be 
implemented with the basic add and shifting operations, the 
core arithmetic of stages require some form of hardware to 
add and to shift. The arithmetic or logical shifts can be 
easily implemented with shift registers. High-speed 
addition requires either the use of a carry-propagation 
adder which adds two numbers and produces an arithmetic 
sum, or the use of a carry-save adder which adds three 
input numbers and produces one sum output and a carry 
output [4].  

The proposed structure (fig.1) consists of pipeline stages, 
three blocks of memory, an address counter CT, three FIFO 
buffers, and a selector unit. The latter is introduced to 
provide repetitive use of operands on line W. To implement 
the pipeline stages of the fixed-point multiply, add and 
subtract unit, we use the techniques proposed and described 
in [9].  

 

 
Fig.1. The pipeline structure 

 
In general, the proposed structure is capable to execute 

calculations acording to the equation:  
 

,CAWR nqmpqpnmnqmp ×××× ±⊗=   (2) 

where ⊗  represents the Kronecker product; W, A and C 
are fixed-point inputs, while R is the output of the pipeline. 
It is obvious from equation (2), that this structure has the 
ability not only to execute multiply and add/subtract 
operations upon the scalar operands (e.g. MAC operation), 
but is also able to perform matrix calculations. It should be 
mentioned, that the Kronecker product, denoted by ⊗ , is 
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an operation on two matrices of arbitrary size resulting in a 
block matrix. It gives the matrix of the tensor product with 
respect to a standard choice of basis. The Kronecker 
product should not be confused with the usual matrix 
multiplication which is an entirely different operation. So, 
the above structure is flexible enough and can be 
successfully used to implement various numerical 
algorithms. 

In order to provide the analysis of the above specialized 
structure, we will denote the clock period by t. Then, we 
can write: tTT t RAMCTpipe === . Next, the four stage 

arithmetic pipeline will be considered.  
Let now provide the analysis of the bus traffic utilization 

when a calculation is running on our structure. Suppose 
nm×  is the size of matrix on input W, while qp×  

indicates the size of matrix on input A. Then, the number 
of operands needed to run a calculation on the pipeline is 
given by relation  

 

( ) k,nm= NOP •×   (3) 
where, k  represents the number of iteration loops. 
Obviously, if ( )qpk ×= , the equation (3) is written as 

 

( ) ( ).qpnm= NOP ×•×   (4) 
The total number of clock periods needed to execute the 

calculation can be written as  
 

      ,
t

T
 N tot

tot =    (5) 

where totT  denotes the running time (full simulation time). 
Evidently, to provide a complete bus traffic analysis both 

pipeline and operation latencies should be considered. The 
latency of pipeline is given by equation: 

 

,tN L pipestpipe ×=   (6) 

where stN  denotes the number of stages in the pipeline. 
On the other hand, the full latency of the calculation will 

be written in the form:  
 

,LTnTT L pipeFIFORAMCToperation +×++=  (7) 

where n  represents the number of columns in the matrix 
(e.g. the number of operands in the FIFO buffer). 

Taking into account the above notations, we can write 
the equation to express the bus busy time: 

 

       nkTTB RAMCTbusy ×++=   (8) 

or 
n,kt2Bbusy ×+×=   (9) 

and the equation to express the bus free time: 
 

.tN N - N kB pipestOPOPfree ×+×=  (10) 

The calculation running time totT  can be now written as 
 

. N - N k L B T OPOPpipebusytot ×++=   (11) 

The above equations were used to construct the diagrams 
of bus traffic using versus the number of iteration loops 
(fig.2). It is obvious, that the bus free time is rising when 
the number of loops also rises. Depending on the size of 

n -parameter, the reducing of the bus traffic is different for 
different values of n. As can be seen from fig.2, the 
reducing of the bus traffic significantly speeds up for k  = 3 
and n  = 16. Figure 3 illustrates the same results but in 
another form. It can be seen, that the bus free time is twice 
bus busy time, for k  = 3 and n  = 16. 

 

 

 
Fig.2. Bus traffic versus number of loops 

 

 
Fig.3. Bus traffic histograms 

 
We fitted the design into a single Cyclone II family 

FPGA from Altera. The design (fig.4) was created by using 
Altera Quartus software. 
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Fig.4. The schematic design 

 
Figure 5 represents the total logic elements used while 

the FIFO buffer length changes from 4 to 16 words. 



6th International Conference on Microelectronics and Computer Science, Chişinău, Republic of Moldova, October 1-3, 2009 
 

         244

 
Fig.5. Hardware cost versus FIFO length 

IV. SIMULATION RESULTS 
To verify the above theoretical results, a lot of 

simulations were performed. Figures 6-10 illustrate the 
simulation diagrams for some cases. Figures 6 and 7 
consider the calculation according equation (2) under 
following conditions: ;2m = 2;n = 2;p = 3q = . The 
matrices (12) and (13) have been used as inputs.  
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The output resulting matrix (14) was calculated in two 
ways: first by loading entire matrix W into the FIFO buffer 
(fig.6), and, then, by only loading a given line of that 
matrix at a given time (fig.7). These cases are respectively 
associated to equations (4), and (3).  
 

 
Fig.6. Loading entire matrix W 

 

 
Fig.7. Loading the matrix W line by line 

 
In fig.8 no loops are used ( k  = 1) and the FIFO on line 

W is only used. This mode can be used to calculate FFT. 
The simulation result of the multiply and add operation is 

given in fig.9. Both the looping and FIFO on the line W 
have been used. Finally, fig.10 presents a test for multiply 
operation (the loops have been used).  

 

 
Fig.8. Calculation with no loop 

 

 
Fig.9. Multiply-Add with loop 

 

 
Fig.10. Multiply with loop 

 
In all these cases the processor design was running at 50 

MHz. The simulation results confirmed the theoretical 
results presented in the previous section. 
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