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Abstract: In this study, we made use of a regional oak tree-ring network from six stands that cover

the northern Moldavian Plateau (eastern Europe) to analyze how different tree ring parameters (i.e.,

early wood tree-ring width, late wood tree-ring width, and total tree-ring width) of Quercus sp. are

influenced by the occurrence of extreme climatic events (e.g., long-lasting drought events). In order

to explore the influence of extreme hydroclimatic events on tree ring width, we have selected each of

the six most extreme positive and negative years of tree growth and addressed the seasonal cycle of

tree growth in comparison with the main climatic parameters, then evaluated both the current and

lagged consequences of extreme hydroclimatic events on tree ring width and the capacity of trees to

recover. Our results indicate that the variability of oak tree ring width from the Moldavian Plateau is

mainly influenced by the availability of water resources, and that an important limiting growth factor

for Quercus sp. is the occurrence of long-lasting drought events, e.g., at least two years in a row with

severe drought conditions.

Keywords: extreme climatic events; tree-ring width; Quercus sp.; dendrochronology; Moldavian

Plateau; superposed epoch analysis; drought

1. Introduction

Extreme climatic events (e.g., droughts, heatwaves, floods) have a strong impact on
different sectors including society, biodiversity, the economy, the environment, forestry,
water management, and agriculture [1–4]. Forest ecosystems are directly affected by the
variability of major climatic parameters (e.g., temperature, precipitation, radiation) via
their impact on the tree’s physiological processes, for example, photosynthesis and water
transport [5]. Thus, extreme climatic events can cause severe damage to trees in the
form of forest fires, drastic reduction in tree growth rates, dieback events, and even tree
mortality [5–8]. Numerous studies have reported a significant decline in the growth of oak
trees during severe drought conditions or extreme climatic events [9–13].

Trees respond to climatic conditions through variations in tree ring parameters (e.g.,
tree ring width, maximum wood density, and stable isotopic composition in tree ring
cellulose, among others) [14,15]. The variations in tree ring width represent an efficient
indicator that can quantify the influence of climate (including drought conditions and
climatic extreme events) on the growth of trees [11,16]. Extreme climatic events (e.g.,
droughts, heatwaves, floods) have a strong impact (e.g., via significant changes in resource
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availability) on tree growth in the year of the extreme climatic event, as well as during
the post-event recovery time. The overall availability of water resources is recorded by
the sequence of wider or narrower tree ring width [16,17]. Additionally, during extreme
drought conditions, trees become more vulnerable to pathogen attacks, forest fires, and
insect outbreaks [18].

Recent studies have shown that as a consequence of the ongoing climate change we are
facing an increase in mean global/regional temperatures, changes in precipitation patterns,
and more frequent and more intense extreme climatic events [3,19–21], including over
Romania [22,23], where our tree ring network is located. The observed record-breaking
heat waves, droughts, and floods over the last several years have cost hundreds of millions
of Euros in damage and have led to significant impacts at the social, economic, and
ecological levels [4,24–26]. Moreover, climate models predict that temperature will continue
to increase in the next decades, and that the associated climatic extreme events will increase
in both frequency and intensity [21,27], causing even greater socio-economic and ecological
damages. Therefore, it is expected that the associated risks and impacts of climate change
will increase significantly in the coming years and even decades.

Considering the economic and ecological importance of forests, a better understanding
of the relationship between the variability of tree ring width and extreme climatic events
is essential for ensuring reliable provisioning of forest ecosystem services in the face of
climate change [24]. The recent extreme drought events which have affected large parts
of Europe over the last decade [3,20,28,29] have allow for investigation of the short-term
consequences of extreme drought on tree growth in temperate European forests [18,24,30];
however, such studies are limited for the eastern part of Europe. Furthermore, it is of great
interest to study the potential impact of extreme climatic events on forestry (especially tree
growth) and related services for human societies in order to help mitigate negative effects.

Here, we employ a regional oak tree ring network from six stands covering the
northern Moldavian Plateau (eastern Europe) to present an overview of how tree ring
width is affected by extreme hydroclimatic events, with a special focus on long-lasting
droughts. The aim of this paper are: (i) to analyze the climate–growth relationship between
different parameters of tree rings of Quercus sp. from the northern Moldavian Plateau (the
northeastern part of Romania and the northern part of the Republic of Moldova) along
with the main climatic parameters; (ii) to investigate how the tree ring network reflects the
spatial extent of extreme climatic events and climatic extremes over the analyzed region;
(iii) to address the seasonal cycle of tree growth variability during the most extreme years;
and (iv) to evaluate both the immediate and lagged consequences of extreme climatic
events on tree growth and on their capacity to recover.

2. Materials and Methods

2.1. Study Area

The study area is located in the northern part of the Moldavian Plateau, which is situ-
ated in the northeastern part of Romania and the northern part of the Republic of Moldova
(Figure 1). The northern Moldavian Plateau is characterized by a series of alternating ridges,
depression, and asymmetric valleys [31]. The highest elevations (~700 m.a.s.l.) are situated
in the northwestern part of the plateau, decreasing towards the eastern and southern parts
of the plateau to levels around 200 m.a.s.l. The climate is temperate-continental, with cold
winters and warm summers [32]. The monthly mean temperature ranges from −2.2 ◦C
(in January) to +21.8 ◦C (in July) [32,33], while the annual precipitation sum is on average
520 mm, with a minimum in January (~26 mm) and a maximum in June (~76 mm) [32,33].
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