The Technical Scientific Conference of Undergraduate, Master, PhD students, Technical University of Moldova

BIG DATA АНАЛИТИКА В АВИАИНДУСТРИИ

Кристина НЕБУРАК

Департамент Программной Инженерии и Автоматики, Группа TI-217, Факультет Вычислительной Техники и Микроэлектроники, Технический Университет Молдовы, Кишинёв, Республика Молдова

Автор: Кристина Небурак, cristina.neburac@isa.utm.md

Îndrumător/coordonator științific: **Dorian SARANCIUC**, UTM

Аннотация: Статья рассматривает роль аналитики Big Data в авиации, обсуждая методы сбора, хранения и анализа данных. Рассматриваются методы анализа больших данных для выявления паттернов и трендов, а также примеры их успешного применения.

Ключевые слова: Big Data, авиаиндустрия, сбор данных, аналитика, информационная инфраструктура.

Введение

Big Data представляет собой массивные наборы данных, анализируемые для выявления паттернов, трендов и связей, в частности в контексте человеческих действий и взаимодействий. Объемы таких данных настолько обширны и комплексны, что обычные методики их обработки не способны справиться с задачей. В современных условиях Big Data занимает ключевую позицию во множестве отраслей.

Авиационная сфера, одна из самых быстроразвивающихся и инновационных отраслей, обслуживает миллионы пассажиров каждый день. Эта отрасль сталкивается с многочисленными проблемами, среди которых улучшение безопасности полетов, повышение топливной эффективности, сокращение количества задержек и отмен рейсов, а также повышение качества обслуживания клиентов.

Big Data – определение и основные характеристики

Big Data охватывает экстремально большие массивы данных, предназначенные для аналитической обработки с целью выявления устойчивых закономерностей, динамических тенденций и ключевых взаимосвязей, особенно тех, что связаны с человеческим поведением и интерактивными процессами. Особенность таких данных заключается в их непомерном размере и сложности, делающих невозможной их эффективную обработку средствами традиционных подходов.

Для полного понимания Big Data важно учитывать пять ключевых характеристик, известных как "5V" — это Volume, Velocity, Variety, Veracity и Value [1]. Объем данных, аккумулируемых организациями, достигает величин в несколько экзабайт, что ставит задачу не только их хранения, но и аналитической обработки. Скорость поступления новых данных требует их оперативной обработки, зачастую почти в реальном времени, что подчеркивает необходимость использования передовых технологий. Разнообразие форматов данных, от структурированных числовых записей до неструктурированных текстов, видео, аудио и финансовых транзакций, подчеркивает необходимость гибких и мощных инструментов анализа. Дополнительно, актуальность и надежность данных, обозначаемые как истинность, играют критическую роль в верификации и доверии к аналитическим выводам. Наконец, ценность извлеченной из данных информации является ключевым фактором, определяющим способность данных влиять на принятие обоснованных решений.

Conferința Tehnico-Științifică a Studenților, Masteranzilor și Doctoranzilor, Universitatea Tehnică a Moldovei

Исторический контекст применения Big Data в авиации

В истории авиации можно выделить ключевые этапы эволюции обработки и использования данных. В 1960-е и 1970-е годы началась эра автоматизации с внедрением первых компьютерных систем для бронирования билетов, что положило начало эффективному сбору и анализу больших объемов информации. Также были предприняты первые шаги в компьютеризации управления воздушным движением, направленные на повышение безопасности и оптимизацию полетных операций.

Продолжение эволюции в 1980-е и 1990-е годы отмечено значительным расширением компьютеризации благодаря увеличению вычислительных мощностей и развитию программного обеспечения. Это позволило авиакомпаниям и аэропортам обрабатывать все большие массивы данных, касающихся пассажиров, полетов и багажа. В этот период начинается внедрение интегрированных систем управления ресурсами предприятия (ERP), что способствовало оптимизации бизнес-процессов в авиационной отрасли.

С наступлением 2000-х, в эру интернета и мобильных технологий, авиакомпании активизировали сбор и анализ данных о покупках билетов, предпочтениях пассажиров и обратной связи. Было начато использование технологии радиочастотной идентификации (RFID) для более эффективного отслеживания багажа и сокращения случаев его потери.

Последний этап развития, начиная с 2010-х годов и продолжающийся до настоящего времени, характеризуется активным внедрением предиктивного анализа и искусственного интеллекта. Это позволяет не только улучшать обслуживание воздушных судов и оптимизировать маршруты, но и существенно повышать уровень пассажирского сервиса. Интеграция и анализ данных из разнообразных источников, включая датчики на борту самолетов, метеорологические станции и социальные сети, позволяют принимать решения на основе комплексного анализа в реальном времени. Эти этапы демонстрируют последовательное углубление взаимосвязи между авиационной индустрией и технологиями обработки данных, начиная от простых автоматизированных систем и завершая сложными аналитическими инструментами на основе Big Data и ИИ для повышения эффективности и безопасности полетов.

Источники больших данных в авиации

В авиационной отрасли существует множество источников больших данных, которые обеспечивают ценную информацию для улучшения сервиса, оптимизации операций и стратегического планирования. К таким источникам относится личная информация пассажиров, включая контактные данные, жалобы, информацию о покупательском и интернет-поведении, а также индивидуальные предпочтения. Данные о самой авиакомпании также представляют большой интерес и включают сведения о аэропортах, самолетах, наземных операциях, логистике, вызовах, с которыми сталкивается отрасль, техническом обслуживании и маркетинговых кампаниях.

Мультимедийные данные, такие как изображения, видео и аудиозаписи, а также информация из поисковых систем и социальных сетей, являются еще одним важным ресурсом. Документированные данные о сотрудниках, рейсах компании, доходах, статистике, отчетах и информационных бюллетенях также играют ключевую роль. В дополнение к этому, данные о конкурентах, включая цены на авиабилеты, профили клиентов, направления, количество рейсов, используемые технологии и качество обслуживания, необходимы для анализа рынка и выработки конкурентных стратегий.

Наконец, источники данных также охватывают внешние факторы, влияющие на авиационную индустрию, такие как погодные условия и прогнозы, международные обзоры, цены на нефть, межгосударственные отношения, новейшие технологические разработки в области авиации и отчеты об инцидентах. Все эти данные в совокупности позволяют авиакомпаниям принимать обоснованные решения, направленные на повышение безопасности, эффективности и удовлетворенности клиентов.

The Technical Scientific Conference of Undergraduate, Master, PhD students, Technical University of Moldova

Методы сбора данных в авиаиндустрии

В авиации применяются разнообразные методики и процедуры для сбора информации (см. Таблицу 1), которые направлены на контроль за авиационными операциями и повышение качества обслуживания пассажиров. Эти методы обеспечивают автоматический забор данных от систем борта, мнения и предпочтения клиентов, а также оперативные и логистические сведения. Интеграция этих данных позволяет усовершенствовать планирование и выполнение полетов, обеспечивает поддержание стандартов безопасности и операционной эффективности на высоком уровне.

Обзор технологий и процессов для сбора данных в авиации

Таблица 1

Метод сбора данных		Описание
Автоматический сборданных	ADS-B (Automatic Dependent Surveillance- Broadcast)	Системы, предоставляющие данные о местоположении воздушных судов в реальном времени
	ACARS (Aircraft Communications Addressing and Reporting System)	Система связи для отправки и получения сообщений между самолетами и наземными станциями
	ATC Radar Systems	Радиолокационные системы управления воздушным движением, фиксирующие данные о полетах
Ручной сбор данных	Пилотские отчеты	Записи данных, вручную вносимые пилотами, включая информацию о необычных событиях или наблюдениях во время полета
	Обслуживание самолета	Записи о техническом обслуживании и ремонте, включая запчасти и выполненные работы
Сбор данных через сенсоры	Датчики на борту	Устройства, собирающие данные о состоянии воздушного судна, включая температуру, давление, скорость и многое другое
	FDR (Flight Data Recorder) и CVR (Cockpit Voice Recorder)	"Черные ящики", записывающие параметры полета и разговоры в кабине пилотов
Сбор данных от клиентов	Системы бронирования и продажи билетов	Сбор данных о покупках, предпочтениях и поведении пассажиров
	Опросы и отзывы	Сбор информации о клиентском опыте и удовлетворенности через анкеты и отзывы
Сбор внешних данных	Метеорологические данные	Информация о погодных условиях, включая температуру, ветер, осадки
	Данные о рынке и конкурентах	Анализ цен, маршрутов и услуг конкурирующих авиакомпаний
Интеграция и сбор данных через интерфейсы	APIs (Application Programming Interfaces)	Интеграция систем бронирования, обмен данными между компаниями и аэропортами
	IoT (Internet of Things)	Отслеживания багажей, поддержка авиатехники и предиктивное обслуживание

Модель обработки Big Data ИКАО

Модель обработки больших данных в авиации, разработанная Международной организацией гражданской авиации (ИКАО), предусматривает последовательное выполнение нескольких важных этапов. На первом этапе данные собираются из различных источников, таких как ADSB (Автоматическая зависимая наблюдательная система с трансляцией), которая использует спутниковую навигацию для определения координат воздушного судна и их трансляции, обеспечивая возможность отслеживания его местоположения, и MIDT (Маркетинговые информационные данные), представляющие собой данные о продажах билетов и информацию о полетах. Следующий шаг - хранение собранных данных, которое осуществляется в облачном хранилище Azure от Microsoft, обладающем необходимой мощностью для обработки большого объема информации.

Дальнейшая обработка данных производится с помощью сервиса HDInsight и платформы Hive от Azure, где HDInsight предлагает облачные возможности для эффективной обработки больших массивов данных, а Hive — это инструмент для агрегации, запросов и анализа, построенный на базе Hadoop. В процессе обработки данные не только анализируются, но и обогащаются, включая, например, для ADSB расчеты дистанций полетов и других важных показателей. После обработки данные сохраняются как в облачной инфраструктуре Azure для обеспечения масштабируемости, так и в локальных сетях, что может быть обусловлено требованиями к доступности или безопасности.

Завершающим этапом является визуализация обработанных данных с помощью инструментов бизнес-аналитики, таких как Tableau, что позволяет наглядно представить результаты анализа и сделать выводы о схемах полетов, эффективности операций и других аспектах. Эти визуализации в сочетании с ежемесячными сводными отчетами, генерируемыми на основе обработанных данных, предоставляют ценные инсайты и способствуют принятию обоснованных решений в авиационной отрасли, преобразуя первичные данные о полетах в полезные знания для улучшения процессов и сервисов. На Рис. 1 представлена схематично модель обработки больших данных в авиации [2].

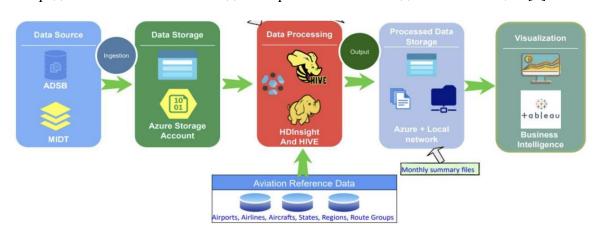


Рисунок 1. Модель обработки Big Data ИКАО

Применение Big Data в авиаиндустрии

Применение аналитики больших данных в управлении авиационными операциями охватывает широкий спектр действий, начиная от расширенного профилактического обслуживания, благодаря которому анализ операционных данных самолетов в реальном времени позволяет предотвратить неисправности, сократить задержки и повысить безопасность полетов [3]. Это подходит и для обеспечения повышенной безопасности, где синтез данных с черных ящиков, датчиков и записей технического обслуживания способствует улучшению стандартов безопасности и позволяет авиакомпаниям принимать профилактические меры для постоянного улучшения безопасности. Оптимизация

The Technical Scientific Conference of Undergraduate, Master, PhD students, Technical University of Moldova

полетных маршрутов также является важным аспектом, при этом аналитика больших данных помогает авиакомпаниям в реальном времени адаптировать маршруты, учитывая метеорологические условия и управление воздушным трафиком, что способствует сокращению расхода топлива и уменьшению вреда окружающей среде.

Другой аспект применения больших данных заключается в прогнозировании спроса, где авиакомпании анализируют исторические и текущие данные для улучшения планирования и оптимизации использования ресурсов, что приводит к снижению операционных расходов. Аналитика больших данных также играет ключевую роль в обслуживания позволяя авиакомпаниям глубже повышении уровня клиентов, покупательские привычки предпочтения И персонализированных предложений. Управление экипажем эффективно оптимизируется за счет анализа данных о рабочих часах и предпочтениях персонала, обеспечивая соблюдение норм отдыха и повышая удовлетворенность сотрудников.

Аналитика данных также вносит вклад в организацию воздушного движения, давая диспетчерам инструменты для эффективного управления сложностью воздушного трафика и уменьшения задержек, что повышает общую эффективность воздушных перевозок. Наконец, бизнес-аналитика на основе больших данных предоставляет авиакомпаниям ценные инсайты для стратегического планирования, выявления рыночных тенденций и адаптации к изменениям, способствуя оптимальному распределению ресурсов и стратегическому решению задач. Все эти меры в совокупности превращают большие данные в мощный инструмент для повышения эффективности, безопасности и удовлетворенности клиентов в авиационной индустрии.

Заключение

Исследование продемонстрировало значительное воздействие и возможности, которые предоставляет аналитика больших данных в сфере авиации. Открылось, что использование анализа данных большого объема может коренным образом изменить как повседневные операции, так и общую стратегию авиакомпаний, начиная от улучшения маршрутизации полетов и увеличения эффективности использования топлива до индивидуализации предложений для пассажиров и повышения стандартов безопасности. Благодаря Big Data, авиационная отрасль сталкивается с перспективой значительного усиления своих позиций за счет повышения операционной эффективности и улучшения конкурентоспособности.

Анализ потенциала использования больших данных в авиации подчеркнул важность их внедрения для улучшения функционирования авиасектора, безопасности полетов и качества обслуживания клиентов. В особенности, для авиационного сектора Республики Молдова эти выводы становятся критически важными на фоне стремления к интеграции в европейское авиационное сообщество и необходимости усиления конкурентных преимуществ национальных авиаперевозчиков.

Библиография:

- [1] Mayer-Schönberger, V., Cukier, K. Big Data: A Revolution That Will Transform How We Live, Work, and Think. New York: Harper Business, 2014.
- [2] "ICAO AVIATION BIG DATA PROCESS" [Online]. Available: https://www.icao.int/Meetings/STA11/Documents/Dashboard_Document.pdf
- [3] "How Big Data Is Transforming The Aerospace Industry" [Online]. Available: https://www.opentracker.net/article/how-big-data-is-transforming-the-aerospace-industry