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Abstract: This article describes a mathematical model through which the level of EEG type waves are processed 

in order to characterize the level of anxiety. Our idea is to use the Choquet integral with respect to a monotone measure. 

We consider the data resulting from the EEG wave measurements for a group of subjects. We describe a procedure by 

using different monotone measures to calculate the anxiety level of a subject using the Choquet integral. For each patient 

we have the level of anxiety given by psychologists. For each patient we compare the results obtained by this method with 

the results of psychologists. Of all the measures used, we chose the measure that provided the closest results to the real 

ones. 
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INTRODUCTION 

In this paper we describe a mathematical model through which the level of EEG type waves is processed 

in order to characterize the level of anxiety, which represents changes in the values of the personality 

characteristics of the BigFive model. The goal was to determine a mathematical tool through which to diagnose 

the level of anxiety. 

In writing this article we have worked in collaboration with the Institute of Studies, Research, 

Development and Innovation of Titu Maiorescu Faculty in Bucharest, as well as with specialists of the Military 

Technical Academy in Bucharest. 

We considered the data resulting from the EEG wave measurements.  The measurements of the values 

of EEG waves were measured in 14 subjects. In order to carry out the measurements a NeuroSky device, with 

two sensors, of which one active was used. The specialists in psychology state that the anxiety is characterized 

by LowAlpha, HightAlpha, LowBeta and HightBeta waves.The input data used were specific values of EEG 

waves, as well as classification data of the anxiety level, provided by the Psychology Research Institute. The 

classification is given by numbers from 0 to 100. 

As a mathematical procedure, the nonlinear integrals are used as a fusion instrument. We used 8 

monotone measures to calculate the anxiety level of each subject, using the Choquet integral. For each measure, 

we compared the results obtained by our method with the results of psychologists. Of all the measures used, 

we chose the measure that provided the closest results to the real ones. 

To calculate the values, we have created a C++ programme. The source code is written in C++ in the 

CodeBlocks development medium, 17.12 version on Windows 10 operating system, combined with GNU GCC 

Compiler in MinGW distribution, 6.3 version. For the matrix operations the Eigen library, version 3.3 was 

used.   

Finally, we have determined a monotonous measure to provide the closest results in relation to 

psychological results in terms of anxiety. 

The determined instrument will be used to draw conclusions regarding the level of anxiety of other 

subjects who have been measured with NeuroSky.       

In the sequel we explain how the nonlinear integral was used for the aggregation of data for the above-

mentioned problem, and, of course, we explain the obtained results. 
 

1. PRELIMINARY FACTS 

Definition 2.1:  A measurable space is a couple (𝑇, 𝜏), where 𝑇 is a non-empty set and 𝜏 ⊂ 𝒫 (𝑇) is a 𝜎-algebra. 

 

Definition 2.2:  If (𝑇, 𝜏) is a measurable space, a monotone measure is a function μ: 𝜏 → ℝ+ having the 

properties: i)  𝜇(∅) = 0; ii) 𝜇(𝐴) ≤ 𝜇(𝐵) for any 𝐴, 𝐵 in 𝜏 such that 𝐴 ⊂ 𝐵. 

 

Definition 2.3: The Choquet integral of the function f with respect to the measure μ is the element 

∫ μ(Fa)da ∈ ℝ+̅̅ ̅̅
̅̅ ̅̅∞

0
.  We shall write: (C)∫ fdμ=∫ μ(Fa)

∞

0
da. 

We shall say that f is Choquet integrable with respect to μ in case (C)∫ fdμ < ∞.  



603 

𝐹𝑎={t ∈ 𝑇 |𝑓(t)≥ 𝑎} = 𝑓−1([𝑎,∞)) ∈ 𝜏. 
 

Special formula 2.4: If T is finite, 𝑇={𝑥1, 𝑥2, … , 𝑥𝑛}, n≥1, 

 (C)∫𝑓d𝜇 = ∑ (𝑓(𝑥𝑖
∗) − 𝑓(𝑥𝑖−1

∗𝑛
𝑖=1 ))𝜇({𝑥𝑖

∗, 𝑥𝑖+1
∗ , … , 𝑥𝑛

∗}) with the convention 𝑓(𝑥0
∗) = 0 . 

 

2. DETERMINATION OF THE ANXIETY DEGREE 

We made 𝑙=14 measurements. These are the l=14 functions 𝑓1, 𝑓2, … 𝑓14. The n=4 measured attributes 

are 𝑥1 = 𝐿𝑜𝑤𝐴𝑙𝑝ℎ𝑎, 𝑥2 = 𝐻𝑖𝑔ℎ𝐴𝑙𝑝ℎ𝑎, 𝑥3 = 𝐿𝑜𝑤𝐵𝑒𝑡𝑎, 𝑥4 = 𝐻𝑖𝑔ℎ𝐵𝑒𝑡𝑎. Namely, for each of the 14 

measurements (rows), we obtained the input values 𝑓𝑝(𝑥1), 𝑓𝑝(𝑥2), 𝑓𝑝(𝑥3), 𝑓𝑝(𝑥4) and the output values 𝑦𝑝, 𝑝 =

1,2,… ,14. So, the fifth column contains the output values 𝑦𝑝, 𝑝 = 1,2,… ,14. The input values are the averages 

of the measurements carried on the 14 subjects. The output values are obtained using the classification given 

by the psychologists to the subjects (measured individuals). These output values are represented by grades, 

from 0 to 100. 

In the C++ program, we used a function to process the data from the CSV files, and to create a matrix.  

Thus, we obtained the table (𝑇1),  with 14 rows and 4+1=5 columns. 

In order to save typographical space, we exhibit below only one row of the table (𝑇1): 
 

Number of Subject Low Alpha High Alpha Low Beta High Beta Grade 

S1 33738.85 26911.79 15911.23 15827.22 10 

 

Psychological results: 

S1=10; S2=0; S3=5; S4=9; S5=11; S6=5; S7=10; S8=62; S9=10; S10=29; S11=10; S12=12; S13=13; S14=11. 

 

We considered 𝑡 = 8 monotone measures. Using each measure 𝜇𝑘 (𝑘 = 1, 𝑡), for each subject p, we 

calculated the level of anxiety 𝑧𝑘,𝑝 (  𝑘 = 1,… , 𝑡 and 𝑝 = 1,… ,14 ).As we have said, we decided to choose as 

fusion instrument the Choquet   integral  of  the   functions 𝑓𝑝, 𝑝 = 1,2,… ,14, with respect  to a monotone 

measure 𝜇𝑘. So, for any   𝑘 = 1, 𝑡 and for any 𝑝 = 1, 14 one has:  

𝑧𝑘,𝑝 = (𝐶)∫𝑓𝑝𝑑𝜇𝑘   

For each measure 𝜇𝑘, we compared the results obtained by our method with the results of 

psychologists, using The Least Squares Method. Actually, for each measure 𝜇𝑘, we calculated  𝐸𝑘 =
∑ (𝑧𝑘,𝑝 − 𝑦𝑝)

214
𝑝=1 . 

We considered the measures: 

   𝜇1(𝐸) =

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

0, 𝑖𝑓 𝐸 = ∅
0.0000143333, 𝑖𝑓 𝐸 = {𝑥1}

0.0000406178, 𝑖𝑓 𝐸 = { 𝑥2}

0.0000471675, 𝑖𝑓 𝐸 = {𝑥1, 𝑥2}

0.00000472641,   𝑖𝑓 𝐸 = {𝑥3}

0.0000143333, 𝑖𝑓 𝐸 = {𝑥1, 𝑥3}

0.0000406178, 𝑖𝑓 𝐸 = {𝑥2, 𝑥3}

0.0000955576, 𝑖𝑓 𝐸 = {𝑥1, 𝑥2, 𝑥3}

0.0000254858, 𝑖𝑓 𝐸 = {𝑥4}

0.0000320333, 𝑖𝑓 𝐸 = {𝑥1, 𝑥4}

0.0000406178, 𝑖𝑓 𝐸 = {𝑥2, 𝑥4}

0.0000471675, 𝑖𝑓 𝐸 = {𝑥1, 𝑥2, 𝑥4}

0.000225524, 𝑖𝑓 𝐸 = {𝑥3, 𝑥4}

0.000225524, 𝑖𝑓 𝐸 = {𝑥1, 𝑥3, 𝑥4}

0.000616894, 𝑖𝑓 𝐸 = {𝑥2, 𝑥3, 𝑥4}

 0.000616894, 𝑖𝑓 𝐸 = {𝑥1, 𝑥2, 𝑥3, 𝑥4}

, 𝜇2(𝐸) =

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

0, 𝑖𝑓 𝐸 = ∅
0.0000245333, 𝑖𝑓 𝐸 = {𝑥1}

0.0000507178, 𝑖𝑓 𝐸 = { 𝑥2}

0.00671685, 𝑖𝑓 𝐸 = {𝑥1, 𝑥2}

0.00000972621,   𝑖𝑓 𝐸 = {𝑥3}

0.000246333, 𝑖𝑓 𝐸 = {𝑥1, 𝑥3}

0.000606178, 𝑖𝑓 𝐸 = {𝑥2, 𝑥3}

0.01955576, 𝑖𝑓 𝐸 = {𝑥1, 𝑥2, 𝑥3}

0.0000324858, 𝑖𝑓 𝐸 = {𝑥4}

0.000329333, 𝑖𝑓 𝐸 = {𝑥1, 𝑥4}

0.00606178, 𝑖𝑓 𝐸 = {𝑥2, 𝑥4}

0.051675, 𝑖𝑓 𝐸 = {𝑥1, 𝑥2, 𝑥4}

0.0625524, 𝑖𝑓 𝐸 = {𝑥3, 𝑥4}

0.725524, 𝑖𝑓 𝐸 = {𝑥1, 𝑥3, 𝑥4}

0.816894, 𝑖𝑓 𝐸 = {𝑥2, 𝑥3, 𝑥4}

 0.916894, 𝑖𝑓 𝐸 = {𝑥1, 𝑥2, 𝑥3, 𝑥4}

, 
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𝜇3(𝐸) =

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

0, 𝑖𝑓 𝐸 = ∅
0.000014, 𝑖𝑓 𝐸 = {𝑥1}

0.00004, 𝑖𝑓 𝐸 = { 𝑥2}

0.000047, 𝑖𝑓 𝐸 = {𝑥1, 𝑥2}

0.0000047,   𝑖𝑓 𝐸 = {𝑥3}

0.0000145, 𝑖𝑓 𝐸 = {𝑥1, 𝑥3}

0.000048, 𝑖𝑓 𝐸 = {𝑥2, 𝑥3}

0.000095, 𝑖𝑓 𝐸 = {𝑥1, 𝑥2, 𝑥3}

0.000025, 𝑖𝑓 𝐸 = {𝑥4}

0.000032, 𝑖𝑓 𝐸 = {𝑥1, 𝑥4}

0.0000406, 𝑖𝑓 𝐸 = {𝑥2, 𝑥4}

0.0000471, 𝑖𝑓 𝐸 = {𝑥1, 𝑥2, 𝑥4}

0.0002, 𝑖𝑓 𝐸 = {𝑥3, 𝑥4}

0.00023, 𝑖𝑓 𝐸 = {𝑥1, 𝑥3, 𝑥4}

0.000616, 𝑖𝑓 𝐸 = {𝑥2, 𝑥3, 𝑥4}

 0.0006168, 𝑖𝑓 𝐸 = {𝑥1, 𝑥2, 𝑥3, 𝑥4}

, 𝜇4(𝐸) =

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

0, 𝑖𝑓 𝐸 = ∅
0.001, 𝑖𝑓 𝐸 = {𝑥1}

0.00004, 𝑖𝑓 𝐸 = { 𝑥2}

0.002, 𝑖𝑓 𝐸 = {𝑥1, 𝑥2}

0.0003,   𝑖𝑓 𝐸 = {𝑥3}

0.003, 𝑖𝑓 𝐸 = {𝑥1, 𝑥3}

0.0005, 𝑖𝑓 𝐸 = {𝑥2, 𝑥3}

0.006, 𝑖𝑓 𝐸 = {𝑥1, 𝑥2, 𝑥3}

0.00002, 𝑖𝑓 𝐸 = {𝑥4}

0.004, 𝑖𝑓 𝐸 = {𝑥1, 𝑥4}

0.006, 𝑖𝑓 𝐸 = {𝑥2, 𝑥4}

0.01, 𝑖𝑓 𝐸 = {𝑥1, 𝑥2, 𝑥4}

0.02, 𝑖𝑓 𝐸 = {𝑥3, 𝑥4}

0.03, 𝑖𝑓 𝐸 = {𝑥1, 𝑥3, 𝑥4}

0.04, 𝑖𝑓 𝐸 = {𝑥2, 𝑥3, 𝑥4}

 0.05, 𝑖𝑓 𝐸 = {𝑥1, 𝑥2, 𝑥3, 𝑥4}

, 

𝜇5(𝐸) =

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

0, 𝑖𝑓 𝐸 = ∅
0.03, 𝑖𝑓 𝐸 = {𝑥1}

0.1, 𝑖𝑓 𝐸 = { 𝑥2}

0.2, 𝑖𝑓 𝐸 = {𝑥1, 𝑥2}

0.02,   𝑖𝑓 𝐸 = {𝑥3}

0.04, 𝑖𝑓 𝐸 = {𝑥1, 𝑥3}

0.3, 𝑖𝑓 𝐸 = {𝑥2, 𝑥3}

0.4, 𝑖𝑓 𝐸 = {𝑥1, 𝑥2, 𝑥3}

0.008, 𝑖𝑓 𝐸 = {𝑥4}

0.07, 𝑖𝑓 𝐸 = {𝑥1, 𝑥4}

0.5, 𝑖𝑓 𝐸 = {𝑥2, 𝑥4}

0.6, 𝑖𝑓 𝐸 = {𝑥1, 𝑥2, 𝑥4}

0.7, 𝑖𝑓 𝐸 = {𝑥3, 𝑥4}

0.8, 𝑖𝑓 𝐸 = {𝑥1, 𝑥3, 𝑥4}

0.9, 𝑖𝑓 𝐸 = {𝑥2, 𝑥3, 𝑥4}

 0.95, 𝑖𝑓 𝐸 = {𝑥1, 𝑥2, 𝑥3, 𝑥4}

, 𝜇6(𝐸) =

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

0, 𝑖𝑓 𝐸 = ∅
0.21, 𝑖𝑓 𝐸 = {𝑥1}

0.22, 𝑖𝑓 𝐸 = { 𝑥2}

0.3, 𝑖𝑓 𝐸 = {𝑥1, 𝑥2}

0.009,   𝑖𝑓 𝐸 = {𝑥3}

0.35, 𝑖𝑓 𝐸 = {𝑥1, 𝑥3}

0.429, 𝑖𝑓 𝐸 = {𝑥2, 𝑥3}

0.54, 𝑖𝑓 𝐸 = {𝑥1, 𝑥2, 𝑥3}

0.01, 𝑖𝑓 𝐸 = {𝑥4}

0.25, 𝑖𝑓 𝐸 = {𝑥1, 𝑥4}

0.26, 𝑖𝑓 𝐸 = {𝑥2, 𝑥4}

0.47, 𝑖𝑓 𝐸 = {𝑥1, 𝑥2, 𝑥4}

0.1, 𝑖𝑓 𝐸 = {𝑥3, 𝑥4}

0.6, 𝑖𝑓 𝐸 = {𝑥1, 𝑥3, 𝑥4}

0.7, 𝑖𝑓 𝐸 = {𝑥2, 𝑥3, 𝑥4}

 0.8, 𝑖𝑓 𝐸 = {𝑥1, 𝑥2, 𝑥3, 𝑥4}

, 

𝜇7(𝐸) =

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

0, 𝑖𝑓 𝐸 = ∅
0.91, 𝑖𝑓 𝐸 = {𝑥1}

0.8, 𝑖𝑓 𝐸 = { 𝑥2}

0.92, 𝑖𝑓 𝐸 = {𝑥1, 𝑥2}

0.94,   𝑖𝑓 𝐸 = {𝑥3}

0.95, 𝑖𝑓 𝐸 = {𝑥1, 𝑥3}

0.96, 𝑖𝑓 𝐸 = {𝑥2, 𝑥3}

0.97, 𝑖𝑓 𝐸 = {𝑥1, 𝑥2, 𝑥3}

0.98, 𝑖𝑓 𝐸 = {𝑥4}

0.99, 𝑖𝑓 𝐸 = {𝑥1, 𝑥4}

0.995, 𝑖𝑓 𝐸 = {𝑥2, 𝑥4}

0.997, 𝑖𝑓 𝐸 = {𝑥1, 𝑥2, 𝑥4}

0.998, 𝑖𝑓 𝐸 = {𝑥3, 𝑥4}

0.9984, 𝑖𝑓 𝐸 = {𝑥1, 𝑥3, 𝑥4}

0.9989, 𝑖𝑓 𝐸 = {𝑥2, 𝑥3, 𝑥4}

 0.99993, 𝑖𝑓 𝐸 = {𝑥1, 𝑥2, 𝑥3, 𝑥4}

, 𝜇8(𝐸) =

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

0, 𝑖𝑓 𝐸 = ∅
0.0123, 𝑖𝑓 𝐸 = {𝑥1}

0.6178, 𝑖𝑓 𝐸 = { 𝑥2}

0.7675, 𝑖𝑓 𝐸 = {𝑥1, 𝑥2}

0.0004,   𝑖𝑓 𝐸 = {𝑥3}

0.02, 𝑖𝑓 𝐸 = {𝑥1, 𝑥3}

0.62, 𝑖𝑓 𝐸 = {𝑥2, 𝑥3}

0.79, 𝑖𝑓 𝐸 = {𝑥1, 𝑥2, 𝑥3}

0.00002, 𝑖𝑓 𝐸 = {𝑥4}

0.1, 𝑖𝑓 𝐸 = {𝑥1, 𝑥4}

0.65, 𝑖𝑓 𝐸 = {𝑥2, 𝑥4}

0.83, 𝑖𝑓 𝐸 = {𝑥1, 𝑥2, 𝑥4}

0.85, 𝑖𝑓 𝐸 = {𝑥3, 𝑥4}

0.879, 𝑖𝑓 𝐸 = {𝑥1, 𝑥3, 𝑥4}

0.895, 𝑖𝑓 𝐸 = {𝑥2, 𝑥3, 𝑥4}

 0.9, 𝑖𝑓 𝐸 = {𝑥1, 𝑥2, 𝑥3, 𝑥4}

. 

 

For k=1, we obtained the conclusions: 𝑧1,1 = 10.3885 , 𝑧1,2 =0.000856597, 𝑧1,3 =5.40384, 

𝑧1,4 = 8.57645, 𝑧1,5 = 11.089, 𝑧1,6 = 4.8107, 𝑧1,7 =  9.96549, 𝑧1,8 = 62.273, 𝑧1,9 = 9.59623, 𝑧1,10
= 29.2099, 𝑧1,11 = 10.3885, 𝑧1,12 = 11.8409, 𝑧1,13 = 12.7664, 𝑧1,14 =  11.1403.  

And 𝐸1 = ∑ (𝑧1,𝑝 − 𝑦𝑝)
214

𝑝=1  = 1.07048. 

For k=2, we obtained the conclusions: 𝑧2,1 =14587.6, 𝑧2,2 =0.979476, 𝑧2,3 = 8515.13, 𝑧2,4 = 11491.3, 
𝑧2,5 = 15824.1, 𝑧2,6 = 7071.18, 𝑧2,7 = 13682, 𝑧2,8 = 87487.3,  𝑧2,9 = 13621.4, 𝑧2,10 = 22975.4, 
𝑧2,11 =14587.6 

,    𝑧2,12 = 16786.8, 𝑧2,13 = 17991.9, 𝑧2,14 = 10585.7. And 𝐸2 = ∑ (𝑧2,𝑝 − 𝑦𝑝)
214

𝑝=1  =1.01876e+010 

For k=3, we obtained the conclusions: 𝑧3,1 = 10.3828, 𝑧3,2 =0.0008309, 𝑧3,3 = 5.4095, 𝑧3,4 =8.56771, 

𝑧3,5 =  11.0831 𝑧3,6 =4.80914, 𝑧3,7 = 9.95662, 𝑧3,8 = 62.2256,  𝑧3,9 = 9.58957, 𝑧3,10 = 29.0884, 

𝑧3,11 = 10.3828,   𝑧3,12 = 11.8331, 𝑧3,13 = 12.7554, 𝑧3,14 =11.1339.. And 𝐸3 = ∑ (𝑧3,𝑝 − 𝑦𝑝)
214

𝑝=1  

=1.02563. 

For k=4, we obtained the conclusions: 𝑧4,1 =820.693, 𝑧4,2 = 0.0709, 𝑧4,3 =457.138, 𝑧4,4 =672.667 

, 𝑧4,5 =911.819, 𝑧4,6 =389.928, 𝑧4,7 =791.865, 𝑧4,8 = 4777.8,  𝑧4,9 =798.017, 𝑧4,10 =2275.92 

, 𝑧4,11 =820.693, 𝑧4,12 =952.129, 𝑧4,13 =1020.56, 𝑧4,14 =1203.77. 



605 

 And 𝐸4 = ∑ (𝑧4,𝑝 − 𝑦𝑝)
214

𝑝=1  =3.47604e+007. 

For k=5, we obtained the conclusions: 𝑧5,1 =17474.4, 𝑧5,2 = 1.71, 𝑧5,3 =9020.28, 𝑧5,4 =15371.5, 

𝑧5,5 =20130.3, 𝑧5,6 =7474.91, 𝑧5,7 =17292.5, 𝑧5,8 = 103691, 𝑧5,9 = 18037, 𝑧5,10 = 130079,

𝑧5,11 =17474.4, 𝑧5,12 =20050.9,  𝑧5,13 =21066.4, 𝑧5,14 =31171.6. And 𝐸5 = ∑ (𝑧5,𝑝 − 𝑦𝑝)
214

𝑝=1  

=3.14793e+010. 

For k=6, we obtained the conclusions: 𝑧6,1 =  17441 , 𝑧6,2 = 0.927, 𝑧3,3 =7824.45, 𝑧6,4 =16887.4, 
𝑧6,5 =19262.9, 𝑧6,6 =6891.82, 𝑧6,7 =18056.5, 𝑧6,8 =88220.1,  𝑧6,9 =17939.7, 𝑧6,10 = 108013, 𝑧6,11 =

 17441, 𝑧6,12 =20480.4, 𝑧6,13 =23059.8, 𝑧6,14 =47984.4. And 𝐸6 = ∑ (𝑧6,𝑝 − 𝑦𝑝)
214

𝑝=1  =2.47029e+010. 

For k=7, we obtained the conclusions: 𝑧7,1 =32240.7 , 𝑧7,2 =4.81793, 𝑧7,3 =11709.2, 𝑧7,4 =33475.2 

, 𝑧7,5 =34915.5, 𝑧7,6 =10417.2, 𝑧7,7 =32146.6, 𝑧7,8 = 142794,  𝑧7,9 =35057.9, 𝑧7,10 = 348265, 

𝑧7,11 =32240.7 

, 𝑧7,12 =39580.7, 𝑧7,13 =48367.8, 𝑧7,14 = 148793. And 𝐸7 = ∑ (𝑧7,𝑝 − 𝑦𝑝)
214

𝑝=1  = 1.74603e+011. 

For k=8, we obtained the conclusions: 𝑧8,1 =22837.8, 𝑧8,2 = 1.7512, 𝑧8,3 =8782.34 

, 𝑧8,4 =20239.1, 𝑧8,5 =23584.2, 𝑧8,6 =7102.06, 𝑧8,7 =19743.5, 𝑧8,8 = 120627,  𝑧8,9 =20736.4, 𝑧8,10 = 

253117 

, 𝑧8,11 =22837.8, 𝑧8,12 = 23527, 𝑧8,13 =  24008, 𝑧8,14 =39238.1. And 𝐸8 = ∑ (𝑧8,𝑝 − 𝑦𝑝)
214

𝑝=1  

=8.42105e+010. 

We chose the measure that provided the closest results to the real ones. Actually, we chose the minimum 

value of  𝐸𝑘. That is 𝐸3.  

So, 𝜇3 is a monotonous measure which provides the closest results in relation to psychological results 

in terms of anxiety. 

 

CONCLUSIONS 

− The studied level of anxiety represents changes in the values of the personality characteristics in the 

BigFive model, and its values were determined using EEG waves. 

− The determined instrument will be used to draw conclusions regarding the level of anxiety of other         

subjects who have been measured with NeuroSky.    
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