
94 
 

IMPROVING PERFORMANCE OF THREADS IN PYTHON USING      C/C++ 
EXTENSIONS 

Author: Olga CASIAN 
Scientific advisor: lect. sup. Dumitru CIORBĂ 

Technical University of Moldova 
Email: dae.eklen@gmail.com, dumitru.ciorba@ati.utm.md 

Abstract: Although Python provides all the synchronization primitives and communication mechanisms 
one can need for fine-grained management of concurrency, due to the design of the CPython interpreter it is 
impossible to execute the code on multiple CPUs at a time. This is caused by Global Interpreter Lock (GIL), 
the mechanism that guaranties that only one thread can execute Python byte code at a time. The article 
describes the origin of this problem and provides a solution that can significantly improve performance by 
using C/C++ code extensions, thus benefiting from the speed of compiled languages.  

 
Index Terms: Python threads, Global Interpreter Lock, C/C++ extensions, performance. 
 
1. Introduction 
 
Python has both lower and higher level threading module interfaces which makes possible to execute 

code in multiple threads of control sharing their global data space. The language provides a big variety of 
different synchronization primitives and communication mechanisms.  

However, the thread performance tests mentioned in [1] proved that executing code in multiple threads 
does not imply code execution on multiple processors, thus having increase in performance. The tests 
showed that running code in two threads on dual-core processor is 1.8 times slower than running the same 
code in sequential manner. Even disabling one of the CPUs cores gives 1.5 times slower result. 

 
2. Global Interpreter Lock 
 
The described behavior of threads is caused by Global Interpreter Lock (GIL), the mechanism used in the 

CPython interpreter that guaranties that only one thread executes Python byte code at a time [2]. The GIL 
was introduced to simplify CPython implementation and maintenance by making the object model implicitly 
concurrent safe. 

The implementation of GIL is based on signaling: each running thread acquires the lock and it is released 
basically only on the blocking I/O operations. The Python itself has no thread scheduler leaving this to the 
operating system running on the computer. The interpreter performs periodic check operations to deal with 
the CPU-bound threads. During these checks release and reacquisition of the GIL takes place giving the 
possibility to other threads to run. While checking periodically the CPython interpreter locks a mutex and 
signals to condition variable. Because other threads are waiting there is a need in extra pthreads processing 
and systems calls for delivering the signal that causes performance issues during the test [1]. 

An attempt to remove the GIL was taken in one of the patches in 1996. Despite the expected result 
performance of GIL-less Python suffered more than in seven times [3]. The GIL implementation changed 
through better since Python 3.2 release where multiple threads have almost the same performance as 
sequential code execution [4], in spite Python 2.7 release is still considered to be the most widely used one. 

There are some standard or third-party extension modules in Python that are able to release the GIL 
while performing computationally-intensive tasks as computing hash functions or solving complex 
mathematical operations. However standard thread and threading modules are not such extensions. 

 
3. C/C++ extensions 
 
Writing extension modules in C/C++, thus avoiding GIL, is a solution for previously described problem. 
Each programming language has its own strength. One can use Python everywhere flexible, fast and easy 

to maintain development is needed. Compiled languages as C or C++ are often complex to program; 



95 
 

however they are optimized for the speed of execution. Mixing two different language types gives not only a 
gain in the execution speed, but also the benefits of interpreted environments as rapid development, 
interactivity, simplicity of debugging and high level of programming. 

There are two distinct integration models [5]: 
- The extending interface – for executing C (or other compiled language) library code from Python 

programs. The model is usually used for optimization or extending language possibilities purposes. 
- The embedding interface – for running Python code from compiled languages programs. The model 

is mostly used for providing an additional customization layer. 
Manual coding C extensions can turn out fairly involved, that is why it is a common practice to use tools 

that generate all required integration code automatically. There are several extension building tools as SIP, 
GRAD and SWIG. The least one is one of the most widely used systems by Python developers. 

 
4. SWIG wrapping 
 
Simplified Wrapper and Interface Generator (SWIG) is an open source system that connects programs 

written in C and C++ with a large variety of high level scripting and non-scripting programming languages 
as Perl, Python, PHP, Ruby, C#, Java and others. SWIG is mostly used to parse C/C++ interfaces and 
generate “glue code” required for the target language to call the C/C++ code [6]. The tool started as a small 
simple project, but the feature set has grown with the contributions of its users.  

One should perform the following steps to create a minimal C/C++ extension for Python code: 
- Write the code in C/C++. Let’s consider the simple example of example.c file that will contain 

function returning the cube of an integer: 
#include <stdio.h> 
#include <stdlib.h> 
int cube(int n){ 
  return n * n * n; 
} 

- Define interface file that will be the input to SWIG (optional in some cases). The file should contain 
declarations of the things one wants to access. Here is the content of example.i file: 

%module example 
extern int cube(int n); 

- Build the module. This step is operating system dependent and usually consists of a few commands 
[4] that produce the file that should be compiled and linked with the rest of the program. 

- Use the module. After importing C/C++ modules behave almost the same as those written in Python: 
import example 
print example.cube(3)   # 9 

 
5. Conclusion 
 
Despite significant limitations in realization of threads in Python, there are situations when using threads 

is appropriate. For example they are useful for I/O bound applications where response time for any I/O 
activity will still be very quick because of host operating system scheduler usage. Certainly, all CPU-bound 
processing should be left to C/C++ extensions that will release the GIL and significantly improve 
performance.  

Although many projects successful use SWIG, there are some limitations as the lack of variable linking, 
representation of pointer model, incomplete handling of C++ classes in Python that is important to consider. 

 
References 
 

1. David Beazley, An Introduction to Python Concurrency, http://www.slideshare.net/dabeaz/an-
introduction-to-python-concurrency, 2009. 

2. Python Software Foundation, http://docs.python.org/glossary.html#term-global-interpreter-lock, 2011. 
3. David Beazley, An Inside Look at the GIL Removal Patch of Lore, 

http://dabeaz.blogspot.com/2011/08/inside-look-at-gil-removal-patch-of.html, 2011. 
4. David Beazley, Inside the New GIL, http://www.dabeaz.com/python/NewGIL.pdf, 2010. 
5. Mark Lutz, Programing Python, 4th Edition, 2010, p. 1483-1502. 
6. SWIG community, http://www.swig.org/, 2011. 




