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INTRODUCTION 
 

In the study of ship’s hull vibratory 
motions, the presence of the fluid medium causes 

the increase of the ship’s mass with the added mass 

value of the fluid which moved together with the 
vessel. This depends on the flow around the ship’s 

hull, the ship’s shape, the free surface, the vibration 

modes and the depth beneath keel. In present days 
the computation of ship’s hull vibrations it’s 

realized based on the added mass determined at 

infinite depth, with the Lewis Method [2] help 

which was for the first time applied in 1927.  
This paper presents the computation of the 

added masses of ship’s hull vertical vibrations in 

shallow waters, using the Schwarz-Christoffel 
transform [1] for determination of the cross section 

of the hull in the bilge area and the Newman 

method [3]. The results obtained show differences 

between this method and the Lewis one, and also 
the added mass influence on the natural frequencies 

of a  bulk carrier seen as a continuous girder [4][5]. 

 
 

1. THE COMPUTATIONAL METHOD 
 

The fluid in which the ship floats, at the 

transversal section i (pict. 1), can be divided in 3 
domains [8]: 

-  the internal domain, 1D , extends in 

height between the bottom of the water and the 

bottom of the ship   HhHz ,1 , and in breadth 

between the ship’s symmetrical plane and the 

longitudinal-vertical plane which contains the 

intersection point between the ship’s bottom line 

and the bilge line   1,0 by ; 

-  the intermediary domain, 2D , between 

 01 ,bby   and  10 , hHhHz  ; 

- the external domain, 3D , between 

  ,0by  and  0,0 hHz  . 

 

 
Picture 1. Cross section geometrical parameters. 

 
In the vertical vibrations with high 

amplitudes of the ship’s hull, in which the speed is 

described by: 

                                tVv cos                         (1) 

assuming that the flow is irotational, the fluid’s 
potential is given by: 

                         tzyzyx  cos,,,               (2) 

in which  represents the angular frequency of the 

vertical vibrations, and V represents  the speed’s 

amplitude of the ship’s vertical motions. In any 
point (y,z) of the studied fluid domain, the speed 

potential must concur with the next conditions: 
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The speed potential in the 1D  domain, in 

accord with the first 4 conditions and for 01 h , 

will have the next expression: 
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in which can be noticed that in vertical direction the 

flow can be neglected. 

To determine the speed potential in the 
intermediary domain must be established the form 

of the transversal section in the ship’s hull in the 

bilge area by the 1  and 2  angles (picture 1): 
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in which n is arbitrary, and also transform the points 

from the real Z plane in source points from  plane, 

using the Schwarz-Christoffel transform: 
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In relation (5)   is the point in   plane 

which corresponds to the intersection point between 
the bilge and the side plating from the Z plane, and 

was determined with: 
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in which  0t  means the length of the bilge (between 

 11 , hHb   and  00 , hHb  ): 
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 The complex potential in  plane is: 
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in which Q represents the source intensity, and C is 

a constant who can be determined from the 

boundary conditions. For  0   relation (5) 

becomes: 
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with the speed potential given by: 
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and for 0  relation (5) becomes: 
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with the speed potential given by: 
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where    22

0 Hzbyr  . 

 In relations (9) and (10) K represents the 

integration constant and has the expression: 
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 In D3 domain, the vertical vibration of the 

ship doesn’t directly influence the fluid flow, but 

indirectly, caused by the movement of fluid masses 
between D2 and D3 domains, in both ways, 

movement which can be described as a q source in 

 Hb ,0 point. The speed potential in D3 domain, 

obtained by Wehausen and Laitone, accordingly 
with the stated conditions, is simplified neglecting 

the free surface effect. In these conditions the speed 

potential in D3 domain, in the vicinity of D2 is: 
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 Constants A0, q, Q şi C are obtained from 

the continuity conditions between the domains: 

             ei
23   ; ei

12   ;
yy

e








 1
1
2 

          (15) 

 The added mass given on a unit length, at 

the vertical vibration of the ship in the considered 
transversal section, is computed based on linear 

Bernoulli equation:  
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from which: 
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in which the added mass coefficient is: 
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 The terms b1i and t0i, for 20,1i , has been 

determined from the ship’s lines drawing.  

 
 

2. NUMERICAL RESULTS AND 

CONCLUSIONS 
 

For the numerical computations has been 

utilized a bulk carrier (length LCWL=296.33m, 

breadth B=46m, draft d=18m) divided in 20 
segments of different lengths, with constant 

geometrical and mechanical characteristics [4].  

The added masses have been determined, 
neglecting the 3D effect, with the classical Lewis 

method for infinite water depth and with the method 

presented above.  
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At the determination of  expression (18), 

with 4.0...3.0
1

1 
ib

h
, in order to respect the imposed 

conditions, for the U shape transversal sections has 

been chosen 5 significant depths beneath the keel: 
0.09m, 0.2m, 0.5m, 0.9m, 1.8m. 

Using the Lewis method, has been realized 

the MASADL program [5], the obtained results 

being showed in the picture 2. 
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Picture 2. aCm Lewis. 

 
For the method presented in the second part of the 

article, has been realized the MASADN program 

[5]. Pictures 37 represent the variations of the 

added mass coefficients in the 20 segments of the 

ship, accordingly with the different depths beneath 
the keel. 
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Picture 3. aCm Newman 005.0/1 dh . 
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Picture 4. aCm Newman 011.0/1 dh . 
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Picture 5. aCm Newman 028.0/1 dh . 
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Picture 6. aCm Newman 05.0/1 dh . 
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Picture 7. aCm Newman 1.0/1 dh . 

 

Drawing a parallel between the above 

results, it can be easily observed that the aCm  

values are far bigger in shallow waters (especially 

amidships), and also a modification in the aCm  

longitudinal distribution across the ship’s length. 
The natural frequencies of the continuous 

girder which represents the 170000tdw bulk carrier, 

has been computed using a transmission dynamic 
matrices method [6][7] for the vertical vibrations, in 

the next hypothesis: 

- the ship’s hull is considered as a 

continuous girder of variable transversal section, 
free at the extremities, leaned on an elastic medium; 

- each segment of the girder is modeled 

using the Euler girder theory, without being taken in 
consideration the rotational inertia and the shearing 

deformations; 
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- the vertical vibration is considered 

irrespective of the other general vibration types of 

the ship’s hull. 
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Picture 8. The natural frequencies in the first 

vibration way. 
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Picture 9. The natural frequencies in the second 

vibration way. 
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Picture 10. The natural frequencies in the third 

vibration way. 

 
In the pictures 8, 9, 10 are represented by 

comparison the first three natural frequencies of the 

ship’s hull, with and without the effect of added 

masses computed with the two methods presented 

in the second part of the article. 

From the representations can be easily seen 
that in the first vibration way (pict. 8), computed for 

shallow waters, the frequency falls by maximum 

50% from the frequency in infinite waters, also falls 
by approximately 70% from the frequency of the 

ship’s hull without the effect of the added mass. 

These decreases in frequency become more 

prominent with the increase of the vibration mode. 
In this way, in the third vibration way, the 

frequency computed for shallow waters decreases 

by 75% from the frequency in infinite waters, also 
by 85% from the frequency of the ship’s hull 

without the effect of the added mass. 
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