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1. INTRODUCTION 
 

The mechanical system of balloon spinning 
analyzed in the present study, is formed of the 
following elements – as represented in the principle 
diagram plotted in Figure 1: 
(1) the reinforced spindle-package assembly, 
rotating around the vertical axis )( represented 

only by circle )( w  of normal cross section of the 

winding package or of bobbin ( Bb ) which contains 
the winding point P, and by the spindle's rod )Sp( , 

solidary with circle )( w ; 

(2) ring )Rn(  solidary with the ringrail segment 

)Rr(  corresponding to a spindle - an element 
which executes an alternative rectilinear translation 
along axis )(  - represented by circle )( T  on 
which the traveler is moving; 
 (3) traveller )Tr( , executing an ellicoidal motion, 

composed of a circular movement on circle ( T ) 
an alternative rectilinear translation , executed 
simultaneously with circle )( T , respectively with 

the ringrail )(Rr . 
 The present study analyzes only the 
spinning sub-system formed of traveller-ring – 
bobbin, point A (of yarn's out put from the feeding 
rollers) and B (the center of yarn’s eye, Ge) 
representing external connection points imposed to 
the yarn portion between the feeding roller and the 
traveller. According to the known methodology of 
mechanics, the effect of yarn's ABC  portion action 

)TrC(   on the above mentioned mechanical 

system is substituted by tension T  in point C - the 
value of which is not known, although its 
orientation is stated by angle *  which it forms 
with the vertical; this angle may be measured either 
by direct measurements or it may be calculated. 
 The mechanics problem involves 
settlement - by means of Lagrangean formalism - of 
the motion equations of the mechanical system 
considered. 

2. ELEMENTS OF THE 
MECHANICAL SYSTEM’S 

KINEMATICS 
 
Some kinematic aspects will be first 

discussed. To each of elements (1) and (2), a 
straight triorthogonal Cartesian mark is invariably 
attached (Fig.1). Mark 11111 'z'y'x'O)'R(  has 
its origin in the center of the circle of bobbin 

)B( b ’ s inferior basis, with axis 11 'z'O  oriented 

according to axis )( ; mark 

22222 'z'y'x'O)'R(   has its origin in the center 

of circle )( T , with the 22 'z'O  axis oriented 

according to axis )( , while axis 22 'y'O  
coincides with the ringrail’s longitudinal axis. 

Element (3), the traveller – assimilated to a 
material point has its position determined by its 
cylindrical coordinates in mark C)'R( c  . 

The positions of marks )'R( 1 , )'R( 2 and )'R( c  

are considered versus the straight, steady, 
triothogonal Cartesian mark Oxyz)R(  , the 

axes’ vectors being k,j,i ; 1'OO  , 11 'z'OOz   

( k'k 1  ), 22 'x'O//Ox , ( i'i 2  ), 22 'y'O//Oy , 

( j'j 2  ).) 
Table I lists the position (p.p) and the 

kinematic (p.c.I, p.c.II) parameters characterizing 
the motion of the three elements of the mechanical 
system. RrT  represents the period of ringrail’s 
rectilinear alternative motion, equal to the 
 deposition time of a layer in the bobbin, 
while c  represents traveller’s polar angle in mark 

)'R( c .  

Table I, column 2, shows that the total 
number of time variable position parameters of the 
mechanical system under analysis is 





3

1i
)i(vv 5pp . The occurrence of the 

following equations of geometric connection 
between the 5 parameters: 
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Table 1 

 
 
Figure 1. Principle diagram of the balloon  
spinning mechanical system 
 

0ryx)y,x(f 22
T

2
TTT1  ;      

0)t(zz)z(f 2TT2   

induces a reduction in the system/s degrees of 
freedom to: 

             3lpp intv                  (2.1) 

 Consequently, the mechanical system’s 
position is determined by 3 Lagrange coordinates, 
represented either by 3 of the 5 variable in time 
parameters or by other, independent ones. Further 
on, the following 3 generalized coordinates will be 
considered: 

)t(q 11  ; )t(zq 22  ; )t(q c3      (2.2) 

with the corresponding generalized velocities: 

            111 )t(q    ;   

          222 v)t(zq   ;  cc3 )t(q    .    (2.3) 

 
 

3. DYNAMIC OF THE MECHANICAL 
SYSTEM 

 
3.1. Calculation of the mechanical system’s 
kinetic energy 
 
 Starting from the motions performed by the 
mechanical system’s elements, i.e.: (1), a rotation 
motion around a steady axis, (2) a rectilinear 
alternative translation along axis )( and (3) an 

ellicoidal motion, the expressions of their energies 
will take the form: 

2
11

2
11c J

2

1
J

2

1
E

1
  ; 

 

(i) pv(i) p.p. p.c.I p.c. II 
1 2 3 4 5 

(1) 1 )t(11    kkk 11111     k111     

(2) 1 )Tt(z)t(zz Rr222 
 

kvkzkzv 2222O2
   kzva 2'OO 22

   

(3) 3 

);t(z);t(y);t(x TTT  

cT cosrx  ; 

cT sinry  ; 

          )t(zz 2T  ; 

TT rvv
3

  

kzjyixv TTT3    

kz)jcosisin(rv 2ccc3     

TT3 raa   
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zM
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1
vM

2

1
E

22
        (3.1)  

 2
2

2
c

2
3

2
T3

2
33c zrM

2

1
vM

2

1
vM

2

1
E

3
    

where 1J  – the inertia moment of element (1) 

versus axis )( ; 2M  and 3M  - the weight of 

element 2 and 3, respectively. 
The kinetic energy of the mechanical system 

considered, defined by relation 



3

1i
cc i

EE , takes 

– as based on relations 3.1 – the final expression: 

  2
c

2
3

2
232

2
11c rMzMMJ

2

1
E      (3.2) 

 
3.2. Calculation of the mechanical system’s 
generalized forces 
 

Calculation of the generalized forces 
considered only the external active stresses and the 
external dissipative passive ones, as plotted in Fig.2 
(their values being determined previously, by 
means of other investigation methods). 

The external, active stresses which are 
manifested act on element (1) are: 
- element’s weight: 

;kgMgMP 111            (3.3) 

- moment of the action engine torque of the 
mechanical system, transmitted to the spindle 
by a transmission belt; 

.kMMM mmm1
                          (3.4) 

The external passive dissipative stresses are 
repesented by: 
- the friction moment during rotation in the pilot 

bearing )Bp( , which takes, in our case, a 

value of: 

kgMM 1piv  ,                            (3.5) 

  being the coefficient of friction on turning. 
- the friction momentum in the cylindrical bearing 

)Bc(  which, under conditions of the material 

symmetry of element’s revolution around the 
rotation axis, may be considered as constant: 

              kMM ff  ,                                (3.6) 

its module, fM , being possibly approximated with 

the value of its static moment (um). 
 The fpiv0 MMM   sum remains 

approximative, with a constant value of the total 

friction momentum in the two bearings, 
corresponding to the element’s static state, a value 
that may be determined experimentally. 
Consequently, twisting device of the external 
stresses acting upon element (1) takes the form: 

 

 
 
Figure 2. Image of the active external and passive 
dissipative stress acting on the mechanical system 
 

 
 










kMkMMMMMM

kgMgMPF
FT

10mfpivm1

111
1G

1

1
 

(3.7) 

On considering relations 0V 1G  ; k11   , the 

following conditions result: 
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(3.8) 

1
1

1
1 MM 






; 0M
z

M
C

1
1

2

1
1 












. 

The external active stresses acting upon element (2) 
are: 
- element’s weight: 

;kgMgMP 222                         (3.9) 

- the driving force putting the assembly into 
motion: 

kFF mm  .                                    (3.10) 

The external passive dissipative forces acting upon 
element (2) are represented by the friction forces to 
sliding in the translation couples, that permit 
railring’s movement. The resulting unique force, 

2fF , has its support represented by axis 22 'z'O , its 

module 0F , determined experimentally for the 

static case is considered constant and is 
permanently oriented counter-clockwisely to the 

direction of velocity kzv 2G2
 ; consequently, this 

force will be expressed as: 
 

 
 

            kF
~

kFzsignF 002f 2
          (3.11) 

 Thus, the wrench in pole 2G , of all external forces 

that act upon element (2), will take the form: 

 
 












0M

kFzsigngMFFFPF
FT

0

022mfm22

2G

2

2



              (3.12) 

 On considering relations kzv 2G2
 ; 02  , the 

following conditions will result: 
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2 
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. (3.13) 

 Element (3), the traveller, is driven by two external 
forces: 
- weight 

;kgMgMP 333             (3.14) 

- tension 

 kcosjsinsinicossinTT *
c

*
c

*    .15) 

in the hypothesis of the plane shape of the yarn 
portion forming the balloon, the position situated in 
the plane determined by the symmetry axis of 
ring’s revolution and also by the traveller. 
            The analytical expression in the steady mark 
of the resultant of the external forces acting upon 
the traveller take the form: 

 
  kgMcosT

jsinsinicossinTTPF

3
*

c
*

c
*

33








      

                                                                  (3.16) 

On considering relation 3v  from table I, column 4, 

the following conditions result: 

0
v

F
1

3
3 




; gMcosTF
z

v
F 3

*
z3

2

3
3 

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

; 

0
v

F
C

3
3 


.                   (3.17) 

Relations (3.8), (3.13) and (3.17) lead is the 
following final expressions of the three generalized 
forces: 
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  02
*

32m FzsigncosTgMMF  
;  (3.18) 








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



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

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G
i3 0M
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


 
. 

 
3.3. Lagrange equations of species II, 
corresponding to the mechanical system 
 
 For completing the system of Lagrange 
equations that describe the dynamic behaviour of 
the mechanical system: 

          k
kk

c Q
q

E

q

E

dt

d

















 (k=1,2,3)    (3.19) 

the partial derivatives of kinetic energy (3.2) are 
first calculated, versus the generalized coordinates 
and generalized velocities: 

              0
E

z

EE

c

c

2

c

1

c 












;                (3.20) 
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On considering conditions (3.20), system 
(3.19) will be reduced to a system of the form: 

k
k

c Q
q

E

dt

d













(k=1,2,3)              (3.21) 

On introducing expressions (3.18) and (3.20) in 
(3.21), the following system of Lagrange equations 
of species II will be obtained: 

 0m
1

1 MM
J

1
 ; 0c  ; 

  0232
*

m
32

2 FzsigngMMcosTF
MM

1
z 


  

                                                                  (3.22) 
The previous system of ordinary differential second 
order equations, the following initial conditions will 

be associated for functions )t(1 , )t(z2 and 

)t(c . 

- position conditions: 

    0
11 )0(   ; 0

22 z)0(z  ; 0
cc )0(   ;   (3.23) 

- velocity conditions 

    0
11 )0(   ; 0

22 v)0(z  ; 0
cc )0(   .   

(3.24) 
 

 

4. CONCLUSIONS 
 

The above presented mathematic model, 
represented by system (3.22) of differential 
equations and also by sets of initial and conditions, 
permits the resolution of two types of problems of 
the dynamics characterizing the spinning 
mechanism on the ring spinning machine: 
a) The fundamental-type problem, which studies 
the operation of the spinning system in a transitory 
regime, such as the one corresponding to machine's 
starting phase - a case in which the initial 
conditions of speed take the forms 

         ;0;0v;0 o
c

o
2

o
1                      (4.1) 

which indicate the normal position of the system's 
elements - or of the one corresponding to    
machine's stop phase, when the constants 
expressing the initial speeds take the values 

         ;;vv; c
o
c2

o
21

o
1                 (4.2) 

corresponding to the operation of the ring-spinning 
machine in a stationary regime; 

b) The direct-type problem, corresponding 
to machine's operation in a permanent regime, 
equations (3.22) permitting the establishment of the 
conditions that should be satisfied by the stresses - 
the motor one especially - that act on the system, so 
that the operation of yarn's torsion should occur as a 
stationary process. 
A necessary condition for a normal operation of the 
mechanical spinning system is that element (1), the 
spindle-bobbin assembly, should execute an 
uniform rotation. Once this condition met, there 
results that: 

              01  ; .const01    

Under such conditions, equation Lagrange provides 
the dependence law of the twisting moment on the 
angular speed and possibly, that of the rotation 
angle, which might permit identification of the 
mechanical characteristic of the system’s driving 
engine. 
Also, the same equation may provide the data 
necessary for the automatic regulation of the 
driving engine’s rotative speed. 
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