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INTRODUCTION

The exact solutions of a relativistic fluid
play a more important role than those obtained
through approximation scheme and numerical ap-
proximation. Moreover, one uses various symme-
tries to get physical viable information from the
complicated structure of the field equations in Ein-
stein's theory. Solutions of the Einstein field equa-
tions for a perfect fluid with or without a radiation
field have been studied by several authors [1]-[9].
Owing to the nonlinearity of the field equations, it is
very difficult to obtain exact solutions.

In the present paper, we present a confor-
mally flat metric representing the gravitational field
of a spherically symmetric distribution of a radiat-
ing perfect fluid. A particular case of the solution is
discussed and corresponding expressions for fluid
energy density, pressure, radiation flux and radia-
tion energy density have been derived.

The solutions of the equations of the rela-
tivistic perfect fluids are analyzed as relativistic
models of a radiating balanced sphere. In comoving
coordinates in which we choose the units so that
c =1, the metric of a conformally flat space-time
for spherically symmetric distribution can be writ-
ten as [8]

s? = A%(t,r)(dt*> —dr?
where A= A(t,r),
dR? =dé” +sin*de’,
@ and ¢ labelling points on the unit sphere.

The energy-momentum tensor of a relativistic ther-
modynamical perfect fluid in the presence of a radi-
ation field [10], [11] is the sum of the fluid energy-
momentum tensor and the energy-momentum tensor
of the radiation field.

T/ =wu,u’ - ph? +Q%.a,=03, (2
with

Qf =Qu,u” +q,u” +u,q9” —%th, ?3)

-r’de*), @

where h? = g# —u_u” is the spatial projector,
u,=(A0,0,0) is the fluid velocity, Q is the
density ~of the radiation energy and
q, =(0,9A,0,0) is the radiative flux.

The Einstein field equations [12]
R -% RS? =&T7, (4)

(x being Einstein’s gravitational constant) which
connect the Ricci tensor waith the energy-

momentum tensor Tﬂ given by (2), become:
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where W =w+Q, p = p+§Q the total ener-
gy and the total pressure. The conservation identi-

ties T/, =0 become

Wt+3%(w+ p)=a(Q—aT4), 9)

pr+%(p+w)=aAq. (10)

The equations of radiation field
s +F, =0,

))Ua , can be written as

——oAQ-aT*),
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qt+4ﬁQ+ [Q +4Ar )=—0Aq. (12)

The equations (9)-(12) give
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i+ 2 (p e w )+ g+ 2a =0, (14)
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The elimination of p~ from (6) and (7) gives

2
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From here and (8) we obtain the system

A Lo, [A) KA
() o () =50 o

The compatibility condition is

K A
22| =o,
[2 ijr

so that ggq =-2F' (t) then

% =-2rF(t),
whose solution is
Alt.r)=(F(tr>+G0))", (16)

where F(t) and G(t) are arbitrary functions.
A relation between the functions F(t) and
G(t) can be obtained from the condition that on the

hypersurface r=r, the total pressure

p*(t,rs)=0. In this condition, from the equation
(6), we obtain

—Z[F (t)r? +G(t)IF"(t)r52 +G”(t)]+
+ 3[F'(t)r52 + G’ (t)]=
4R OF O - 26.(0))
(7)

Many solutions have been found by specifying a
functional relation between some metric functions.
We shall present models of radiating sphere by con-

sidering the particular case G(t)z kF(t). In this
case, from the equation (17), we obtain for F

(2 + kF [ 2R @)F ()+ 3(F ()Y |=
= 4(r2 - 2K)F2(t).

This gives
1 1 1

Alt.r)= r’ +k F(t)= r’ +

" (Cle"’t + Cze“”t)2 :
(18)

2
with a? =M, where C, and C, are arbi-
(rf + k)2

trary constants.
The fluid energy density, pressure and radi-
ation flux can then be computed from (5)-(8):

ooy 12 (r2+k)2
W (t,l’)— . (Cle“‘+C2e‘“t)4

d _~ ot )
y az(cleat cze_m] e K| g
Ce™ +Cpe (r2+k)

X

p*(l"”):i (7’2+k)2 7%
K (Cle“’ +C2e_“’)
2
_8ar ) Cie® —Cpe™
qlt,r)= . (r2+k’(clle“‘+cje‘“t)5' (21)

If we substitute A(t,r) given by (18) in (11})-
(14), we obtain

Cce“-C,e™
ce”+C.e™

+0 -2 — =0, 22
a, mq (22)

W, +6a (w* + p*)+

r’+k
In virtue of the conservation identities, the functions
w', p’, and q, given by (19)-(21), verify the
equations (22) and (23}). With q given by (21), the
equation (25) can be written

%(Qr_ 8rQ ]=_§(clem +Ceef. 29)
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where

24a°
B(t)= X
()=
y (Cle"’t + Cze‘”“)2 + 3(C1e"’t
(Cle"’t +C,e™
ot —at
C(t)= 2400 Cle C2e .
K (Cle”‘t + Cze‘“‘)
The general solution of the equation (26) is

Qtr) =5 BN +kf - +k)' x
Jd1n r’ +12r2+3k
2k® " ri+k 4 (r2+k)2
for k #0, and
QQJ)=%Bay4+%cayaH%@ya
for k =0.
The function Qo(t) can be determined
from the condition
Qt.r.)=Q(t).
For example, if k=0, C, =1, C, =0, then
Q(t,r)=

o)

2
4or®(1 1) 1
+__ _6__6 e s .
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If we choose in (16) F(t) a constant (F(t)z 1),
one finds

Alt,r)=

—Cze‘”“)2

)

1

r—(t-by '
with b an arbitrary constant, which corresponds to

a solution of the Einstein's vacuum equations [6].
The equation (24) gives the relation between the

density of radiation energy Q(t,r) and the tem-
perature T(t,r).
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