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INTRODUCTION 
 

The exact solutions of a relativistic fluid 
play a more important role than those obtained 
through approximation scheme and numerical ap-
proximation. Moreover, one uses various symme-
tries to get physical viable information from the 
complicated structure of the field equations in Ein-
stein's theory. Solutions of the Einstein field equa-
tions for a perfect fluid with or without a radiation 
field have been studied by several authors [1]-[9]. 
Owing to the nonlinearity of the field equations, it is 
very difficult to obtain exact solutions. 

In the present paper, we present a confor-
mally flat metric representing the gravitational field 
of a spherically symmetric distribution of a radiat-
ing perfect fluid. A particular case of the solution is 
discussed and corresponding expressions for fluid 
energy density, pressure, radiation flux and radia-
tion energy density have been derived.  

The solutions of the equations of the rela-
tivistic perfect fluids are analyzed as relativistic 
models of a radiating balanced sphere. In comoving 
coordinates in which we choose the units so that 

1c  , the metric of a conformally flat space-time 
for spherically symmetric distribution can be writ-
ten as [8] 
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where )r,t(AA  , 

,dsindd 2222    

  and   labelling points on the unit sphere. 
The energy-momentum tensor of a relativistic ther-
modynamical perfect fluid in the presence of a radi-
ation field [10], [11] is the sum of the fluid energy-
momentum tensor and the energy-momentum tensor 
of the radiation field. 
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 uugh   is the spatial projector, 

)0,0,0,A(u   is the fluid velocity, Q  is the 

density of the radiation energy and 
)0,0,qA,0(q   is the radiative flux. 

The Einstein field equations [12]  
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( being Einstein’s gravitational constant) which 

connect the Ricci tensor  
R with the energy-

momentum tensor 
T  given by (2), become: 
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where ,Qww*   Q
3

1
pp*   the total ener-

gy and the total pressure. The conservation identi-

ties 0T ; 
  become 
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The equations of radiation field 
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The equations (9)-(12) give 
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The elimination of *p  from (6) and (7) gives 
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From here and (8) we obtain the system 
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The compatibility condition is 
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whose solution is 
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where  tF  and  tG  are arbitrary functions. 

 A relation between the functions  tF  and 

 tG  can be obtained from the condition that on the 

hypersurface ,srr   the total pressure  

  .0r,tp s
*   In this condition, from the equation 

(6), we obtain 
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(17) 
Many solutions have been found by specifying a 
functional relation between some metric functions. 
We shall present models of radiating sphere by con-
sidering the particular case    .tkFtG   In this 

case, from the equation (17), we obtain for F  
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with   ,
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  where 1C  and 2C  are arbi-

trary constants. 
The fluid energy density, pressure and radi-

ation flux can then be computed from (5)-(8): 
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If we substitute   r,tA  given by (18) in (11})-
(14), we obtain 
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In virtue of the conservation identities, the functions 

,w*  ,*p  and ,q  given by (19)-(21), verify the 
equations (22) and (23}). With q  given by (21), the 
equation (25) can be written 
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where 

                     

 224

tB  

  
   

  ,
eCeC

eCeC3eCeC
6t

2
t

1

2t
2

t
1

2t
2

t
1












  

             .
eCeC

eCeC24
tC 3t

2
t

1

t
2

t
1















  

The general solution of the equation (26) is 
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 The function  tQ0  can be determined 

from the condition  
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If we choose in (16)  tF  a constant (   1tF  ), 
one finds 
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with b  an arbitrary constant, which corresponds to 
a solution of the Einstein's vacuum equations [6]. 
The equation (24) gives the relation between the 
density of radiation energy  r,tQ  and the tem-

perature  .r,tT   
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