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I. INTRODUCTION 

In nanotechnology various types of nanopores are 

obtained. Our goal is to obtain the dispersion relation in a 

system of cylindrical nanopores of radius R, arranged in a 

periodic two-dimensional lattice with constant a. 

II. THE EQUATIONS FOR A SYSTEM OF 

NANOPORES 

Consider the propagation of electromagnetic waves in a 

system of simple cylindrical nanopores arranged in an 

infinite grid (we consider only the square). 

For simplicity, only the case where the component of the 

electric field  ⃗⃗ (  ) along the axis of the nanopores is not 

equal to zero , where              . 
Description is based on the standard Maxwell's 

equations in vacuum [1]. From the Maxwell's equations, it 

follows that for a non-magnetic media, this situation, in 

the case of extremely low frequencies  ω→0 

(λ=2πc/ω>>a)  is fully described by the equations for the 

electric field  ⃗⃗ (  ) ( ⃗⃗ (  )   ). 

 

   ( (  ) ⃗⃗ (  ))                 (1) 

 ⃗⃗ (  )       ( (  ))            (2) 

 

where  (  ) - the relative dielectric constant at point     . 
 

The solution of the above equation is expressed  as 

 

 (  )   ( ⃗ )   (   )          (3) 

 

Where h - wave attenuation along the tubes axis (z axis),   

 ⃗ ( ⃗ ) - function describing the distribution along the plane 

(x,y) of any of the variables (ε,  ⃗⃗ , φ),  .  

 

 

 

From equations (1,3) it follows that : 

 

   ( ⃗ )  ( ⃗ )    ( ( ⃗ )  ( ⃗ ))            (4) 

 

From equations (2,3) it follows that : 

 

   ⃗⃗  ( ⃗ )    (  ( ⃗ ))                           (5) 

 

Where    two-dimensional gradient operator,  ⃗⃗   

[     ]. 

From equations (4,5) that the generalized equation for the 

eigenvalues h
2
 

 

   ( ⃗ )  ( ⃗ )    ( ( ⃗ )    ( ⃗ ))     (6) 

 

In fact, we have the operators equality in the coordinate 

representation. Note that equation (6) is completely 

equivalent mathematically to a two-dimensional problem 

of the conductivity of the dispersion medium at   ω→0.    

It is only necessary  in (6) to replace    ( ⃗ ) by the value 

of the electric potential, and   ( ⃗ ) by the conductivity 

respectively. 

The simplest solution of (6) is known  : 

 

      ( ⃗ )                (7) 

 

Similar methods are used in describing the dispersion 

media to obtain their effective parameters [2]. We show 

that except for the simplest solutions (7), there are non-

trivial solutions for h ≠ 0 in (6). 

In the following we consider only the case when the 

spatial distribution of the )(r


  - relative permittivity for 

a single nanocylinder placed at the origin, is given by :  

 

 (  )   (   )(     )   (  ⁄ )           (8) 
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where θ (•)-step function, R-radius of the nanopore, 

ε2/ε1-permittivity outside/inside the nanocylinder (ε1=1, 

ε2=12). Parameter ν ≥ 0, describes the interface between 

nanocylinders and its surrounding space. The value ν = 0 

corresponds to a perfectly flat surface. Values ν > 0 

correspond to a more realistic model of the interface, 

including the transition layer thickness L ~ R • ν 

(accounting irregularities, or other inhomogenities 

according to the conditions L << R, 2π/h). A similar 

method is used in [3]. 

 

To find the eigenvalues and eigenfunctions of (6) we 

use the standard  method of  plane waves [4]. Solution of  

the equations for a system of nanotubes  is found  in the 

form  of  a Fourier expansion  in two-dimensional plane 

waves 

 

 ⃗ ( ⃗ )  ∑  ̃( ⃗   ⃗  )   ( ( ⃗   ⃗  ) ⃗ ) ⃗⃗                 (9) 

 

where 

 

 ̃( ⃗   ⃗  )  
 

 
∬    

 
 ⃗  ( ⃗ )   (  ( ⃗   ⃗  ) ⃗ )    (10) 

 

 ⃗   - vector of the reciprocal two-dimensional lattice,   ⃗  -
vector of the two-dimensional motion, changes within the 

Brillouin zone,      - area of the unit cell, a-lattice 

constant. So we actually turn  to the momentum  

representation [5]. 

 

Substituting (9) into (6), we obtain an equation  to 

determine  the eigenvalues h
2
 : 

 

Det(Z)=0        (11) 

 

Where      ̃   ̃,  ̃ and  ̃ are a matrices of the rank 

300, so that : 
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J (•), Γ (•) - specific Bessel and Gamma functions [6].  

Further, for simplicity, we restrict ourselves to the case of 

motion along the pores ( ⃗   ). The Z matrix in the 

equation (11) is expanded in a power series in R up to the 

five term to attain numerical results with 300-rank 

matrixs. The graphs of the dependence of the wave vector 

h=h(R)≠0 on the radius R of photonic crystals of 

nanopores  are obtained by using the MATLAB’s polyeig 

function [7] 

 

 

III. RESULTS 

The solution of the obtained eigenvalue problem leads 

to the following dependence for nonzero wave vectors (h 

≠ 0) of the pore radius R (where ν = 0.1). 

 
Fig. 1: The dependence for nonzero wave vectors  

                 (h ≠ 0) on the pore radius R. 

Individual modes have  the following distribution  of   

   (  ) 
  in the section plane pores with different R and h 

: 

   
                 a)                                          b) 

       
                 c)                                          d) 

       
e)                                          f) 

       
g)                                          h) 

Fig. 3 The distribution of the intensity    (  ) 
  with 

           different values of the parameters R and h :  
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a) R/a=0.051   , ha/(2π)=4.438;  

b) R/a=0.133   , ha/(2π)=2.612; 

c) R/a=0.136   , ha/(2π)=1.372; 

d) R/a=0.151   , ha/(2π)=0.412; 

e) R/a=0.244   , ha/(2π)=0.070; 

f) R/a=0.245    , ha/(2π)=0.220; 

g) R/a=0.282   , ha/(2π)=0.262; 

h) R/a=0.485   , ha/(2π)=0.052; 

 

In Fig. 3 we clearly see that the two parameters R and h 

are in a confrontation with each other, i.e. their relation, 

causes the formation of specific symmetries of the modes, 

particularly, by shrinking the radius R the modes tend to 

become somewhat localized and at relatively small values 

collapse into one single domain, whereas by varying h it 

seems there is a tendency to cause some perturbations in 

the modes while decreasing h (with R=const) . 

 

Since we consider the case of extremely low frequency, 

wavelength similar fashion λh << λ (λ = 2πc / ω - vacuum 

wavelength). Therefore, these modes can be called 

ultrashort[8].  Frequency dispersion for these modes is 

shown on the figure below : 

 

 
Fig. 3:  A schematic view of a Tachyon-like  

                     dispersion relation. 

 

It has a tachyon-like character, i.e. has a group velocity 

much greater than the speed of light at ω → 0. This fact 

does not contradict the principles of the theory of 

relativity, because in this mode has no magnetic 

component, and it does not transfer energy [9]. 

IV. CONCLUSION 

In this paper the possibility of tachyon-like ultra-low-

frequency modes in a system of nanopores in the case of 

extremely low frequency is exposed by traditional 

methods used in the theory of photonic crystals. 
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