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I. INTRODUCTION 

In the last years an increasing interest in the use of 
organic materials in thermoelectric devices has been 
observed. Considerable research has been focused on the 
understanding and improving of the thermoelectric 
properties of such materials. A special interest is observed 
in the applications of quasi-one-dimensional organic 
materials for thermoelectric devices designed to convert 
heat directly into electricity, or electricity in cooling. It was 
demonstrated theoretically (see [1] and references therein) 
that after the optimization of parameters, these crystals can 
have much better thermoelectric properties than those 
known so far.  

Among the best theoretically and experimentally studied 
quasi-one-dimensional organic crystals are those of 
tetrathiofulvalene-tetracyanoquinodimethane, TTF-TCNQ. 
But not all parameters of these crystals are well 
determined. Therefore, it is necessary to expand the 
number of experiments and form the comparison of 
theoretical results with the experimentally obtained data to 
improve the precision of some parameters.  

In this paper, we propose to use the Peierls structural 
transition phenomenon to specify the values of certain 
parameters of these crystals [2]. The Peierls transition is 
currently studied in many papers (see [3] and references 
therein). 

The structural Peierls transition was theoretical predicted 
by Rudolf Peierls who has established that the strictly one-
dimensional lattice formed by ions with one conduction 
electron for each ion is unstable at zero temperature. Due to 
the interaction of conduction electrons with the lattice 
periodic field and with acoustic phonons, in terms of 
energy it is more convenient to deform uniform lattice and 
the constant of lattice to be doubled. It is said that lattice 

dimerization occurs. During this process, the mechanic 
elastic energy of the lattice increases. But electron-lattice 
interaction leads to the renormalization of electronic 
spectrum and the energy of electron system decreases. 
Under certain conditions, the latter can overcome the 
increase of lattice energy, and then for whole system it is 
favorable to pass in dimerized state with lower total energy. 
This leads to appearance of a forbidden energy band just 
above the Fermi energy. As a result, the crystal which 
before dimerization was a metal after dimerization 
becomes dielectric. Usually, this process is caused by the 
decreasing of temperature. Thus, at a given temperature the 
one-dimensional metallic crystal has to pass in a dielectric 
state. This temperature is called the Peierls critical 
temperature.  

In the previous papers [4-7] the Peierls structural 
transition in Q1D crystals of TTF-TCNQ type was 
investigated in a 1D physical model of the crystal. Peierls 
transition was studied in the case when the conduction 
band is half filled and the Fermi dimensionless quasi 
momentum is kF = π/2 and in the case when the 
concentration of conduction electrons is reduced and the 
band is filled up to a quarter of the Brillouin zone, kF = π/4, 
[4]. The renormalized phonon spectrum has been calculated 
for different temperatures.  

In [8, 9] the Peierls transition in the same crystals was 
investigated in a 2D physical model. The polarization 
operator as function of temperature was calculated for 
different values of d, where d is the ratio of the transfer 
energy in the transversal direction to conductive chains to 
the transfer energy along the conductive chains. 

In this paper we also apply a 2D physical model of the 
crystal. It is simultaneously considered two the most 
important electron-phonon interactions. One of them is of 
deformation potential type and the other is similar to that of 
the polaron. The ratios of amplitudes of the second 
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interaction to the first one along chains and in transversal 
directions are characterized by the parameters γ1 and γ2, 
respectively. The analytic expression for the phonon 
polarization operator is obtained in the random phase 
approximation. The polarization operator as a function of 
temperature is calculated for different values of δ, where δ 
is the increase of the Fermi momentum, kF, determined by 
the increase of carrier concentration. The Peierls critical 
temperature Tp is determined for different values of δ, so 
the Fermi momentum is kF + δ, and for different values of 
the parameter d (from 0 to 0.6. The results obtained in the 
2D physical model are compared with those of 1D model. 

 

II. 2D PHYSICAL MODEL OF THE CRYSTAL 

Compound of TTF-TCNQ forms quasi-one-dimensional 
organic crystals composed of TCNQ and TTF linear 
segregated chains. The TCNQ molecules are strong 
acceptors, and the TTF molecules are donors. However, the 
conductivity of TTF chains is much lower than that of 
TCNQ chains and can be neglected in the first 
approximation.  

The Hamiltonian of the system was described in [10] and 
has the form: 

++=∑ ∑ ++

k q
qqqkkk bbaaH ωε ℏ)(  
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Because the electron wave functions are strongly 
localized,   the approximations of tight binding electrons 
and the nearest neighbors are applied. 

In (1) the first term is the energy operator of free 
electrons in the periodic field of the lattice, where k is two-
dimensional wave vector with projections (kx, ky). ak

+ak are 
the creation and annihilation operators. The energy of 
carriers has the form: 

))cos(1(2))cos(1(2)( 21 akwbkw yx −+−=kε ,                   (2) 

where w1 and w2 are transfer energies of a carrier from one 
molecule to another along the chain (with the lattice 
constant b, x direction) and in perpendicular direction (with 
the lattice constant a, y direction). Due to the crystal quasi-
one-dimensionality w2 is much less than w1.  
    The second term in the relation (1) is the energy of 
longitudinal acoustic phonons with two-dimensional wave 
vector q and frequency ωq. 
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where ω1 and ω2 are limiting frequencies for oscillations in 
x and y directions, ω2 is much less than ω1. In (1) bq

+bq are 
the creation and annihilation operators of an acoustic 
phonon.  
    The third term in equation (1) represents the electron-
phonon interactions. There are considered two such 
interaction mechanisms. The first interaction is determined 
by the fluctuations of energy transfer w1 and w2, due to the 
intermolecular vibrations (acoustic phonons). This 
interaction is similar to that of deformation potential, and 

the coupling constants are proportional to the derivatives 

1w′ and 2w′  of w1 and w2 with respect to the intermolecular 

distances, 01 >′w , 02 >′w . The second interaction is of 

polaron type. This interaction is conditioned by the 
fluctuations of the polarization energy of the molecules 
around the conduction electron. The coupling constant of 
interaction is proportional to the average polarizability of 
the molecule α0. This interaction is important for crystals 
composed of large molecules such as TCNQ, so as α0 is 
proportional to the volume of molecules. Coulomb 
interaction between carriers is not considered, because this 
interaction is significantly screened by polarization effects. 

The square module of matrix element is represented in 
the following form: 
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where N  is the number of molecules in the basic region of 
the crystal, M  is the mass of the molecule; parameters γ1 
and γ2 have the sense of the amplitudes ratio of second 
electron-phonon interaction to the first one 
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From exact series of perturbation theory for the phonon 
Green function [10] we sum up the diagrams containing 0, 
1, 2 ... ∞ closed loops of two electronic Green functions 
which make the most important contribution. This is the 
random phase approximation. We denote the phonons 
Green function in this approximation by )','( ttD −− rr , 

and the free phonons one by )','(0 ttD −− rr , where r and 

r’  are spatial coordinates, t and t’  – time coordinates. For 
the function )','( ttD −− rr  an integral equation is 

obtained. Performing Fourier transformation after spatial 
and time coordinates, we obtain the Fourier component of 
the Green function ),( ΩqD  

),(),(),(),(),( 00 ΩΩΠΩ−Ω=Ω qqqqq DDDD ,     (6) 

where ),( ΩΠ q  is the phonon polarization operator, q is the 

wave vector of longitudinal acoustic phonons and Ω  is 
renormalized phonon frequency, determined from the 
equation  

,)],(1[)( 2/1ΩΠ−=Ω qq qω  

where ),( ΩΠ q  is the dimensionless phonon polarization 

operator. 
    The critical temperature of Peierls transition is 
determined from the condition that at this temperature the 
renormalized phonon frequency is diminished up to zero, 
i.e. Ω(q) = 0. It means  

0),(Re1 =ΩΠ− q ,        (7) 

where for ),(Re ΩΠ q  the following expression is obtained 
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Here A(k,q) is the matrix element of electron-phonon 
interaction presented in (4), ε(k)  is the energy operator 
presented in (2), kn  is the Fermi distribution function, and 

ħ is the Planck constant.     

III.  RESULTS 

The critical temperature of Peierls transition is 
determined from (7), when Ω = 0, and qx = π, qy =π. The 
polarization operator as a function of temperature is 
calculated for different values of δ, where δ is the increase 
of carrier concentration over the stoichiometric one. In 
Figs. 1, 2, 3, 4 (the polarization operator is named Polar) 
the results of calculation are presented.  

 

 
In all figures the transition temperature does not depend 

on the values of γ1 and γ2, because for qx = π, qy = π the 
respective terms become equal to zero. The Peierls 
transition temperature depends only on the values of d, δ 
and of kF. In Figs.1, 2, 3, 4 the continuous, dash, dotted, 
dash-dotted and short dotted lines correspond to δ = 0 (or to 
a half filled band, Fermi momentum kF = π/2), δ = 0.0078 
(or about 0.5 % of the Fermi momentum increase), δ = 
0.0157 (or to an additional increase in carrier concentration 
which leads to increase of about 1 % of the Fermi 
momentum), δ = 0.018 (or about 1.2 % of the Fermi 
momentum increase) and δ = 0.02 (or to about 1.3 % of the 
Fermi momentum increase), respectively. The transition 
temperatures are determined form the intersections of 
calculated curves with the horizontal line at 1.0. 

In Fig. 1 it is presented the case when d = 0. This case 
corresponds to 1D physical model. It is seen that in the 1D 
physical model, the Peierls transition takes place for all 
values of parameter δ. For δ = 0, Tp ∼ 60 K; for δ = 0.0078, 

Tp ∼ 58 K; for δ = 0.0157, Tp ∼ 50 K; for δ = 0.018, Tp ∼ 47 
K; for δ = 0.02, Tp ∼ 44 K.  It is observed that the Tp 
strongly decreases with the increase of the parameter δ, 
i.e. when the carrier concentration is higher the critical 
temperature Tp is lower. This means that with the increase 
of carrier concentration the diminution of electron 
subsystem energy, determined by the interaction with the 
lattice, is reduced. 

 
In Fig. 2 it is presented the case when d = 0.013. Note 

that the value d = 0.013 is estimated for real crystals of 
TTF-TCNQ. It is seen that increasing the ratio of the 
transfer energy in the direction transversal to conductive 
chains to the transfer energy along the conductive chains, 
the Peierls critical temperature is diminished. For δ = 0,  Tp 

∼ 57 K; for δ = 0.0078, Tp ∼ 55 K; for δ = 0.0157, Tp ∼ 47 
K; for δ = 0.0018, Tp ∼ 42 K and for δ = 0.02, Tp ∼ 35 K. 
But the diminution of electron subsystem energy still 
prevails over the increase of lattice elastic energy and the 
structural transition takes place for all considered carrier 
concentrations, now at lower temperatures.  

 
In Fig. 3 it is presented the case when d = 0.2. It is seen 

that increasing more the parameter d, the Peierls critical 
temperature Tp is additionally diminished, and  more over, 

Fig. 3. The same as in Fig. 1 for d = 0.2. 
 

Fig. 2. The same as in Fig. 1 for d = 0.013. 
 

Fig.1. The polarization operator as a 
function of temperature, for different values 
of δ and d = 0. 
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the transition  disappears for δ = 0.0157, δ = 0.018 and δ = 
0.02. This means that in the last cases, due to the increase 
of deviation from the crystal quasi-one-dimensionality, the 
diminution of electron subsystem energy can not prevail 
over the increase of lattice deformation energy and the 
transitions do not take place. The Peierls transition appears 
only for δ = 0, Tp ∼ 30 K and for δ = 0.0078, Tp ∼ 25 K.  

 
In Fig. 4 it is presented the case when d = 0.6. It is 

observed that additional increase of the deviation from the 
crystal quasi-one-dimensionality (parameter d) leads to 
additional decrease of the polarization operator and the 
Peierls transition disappears for all values of  δ with the 
exception of δ = 0. For this value the critical temperature is 
strongly reduced, Tp ∼ 12 K. Thus, for the realization of 
Peierls structural transition it is necessary that the crystal 
have pronounced quasi-one-dimensional properties and the 
carrier concentration does not prevails strongly over the 
stoichiometric one.    

IV.  CONCLUSION 

We have studied the Peierls transition in quasi-one-
dimensional organic crystals of TTF-TCNQ type in 2D 
approximation. It is applied a more complete 2D physical 
model of the crystal. It was simultaneously considered two 
the most important electron-phonon interactions. One of 
them is of deformation potential type and the other is 
similar to that of polaron. The ratios of amplitudes of the 
second interaction to the first one are characterized by the 
parameters γ1 and γ2, respectively.  

The phonon Green function is obtained in the random 
phase approximation. The polarization operator as a 
function of temperature is calculated for different values of 
the parameter δ, where δ is the variation of the Fermi 
momentum over the value kF = π/2 for stoichiometric 
crystals. The Peierls transition temperature Tp is determined 
for different values of d, where d is the ratio of the transfer 
energy in the direction transversal to conductive chains to 
the transfer energy along the conductive chains. It is found 
that for 1D model of the crystal the Tp strongly decreases 
from 60 K down to 12 K with the increase of the parameter 

δ from 0 up to 0.02, or up to about 1.3 % of the Fermi 
momentum considered in this paper. In the 2D physical 
model, the Tp also decreases with the increase of carrier 
concentration n, and for a certain value of n the transition 
even disappears.  

The Peierls critical temperature decreases, when the 
deviation from the crystal quasi-one-dimensionality 
increases and it decreases additionally when the parameter 
δ increases. One can conclude that for the realization of 
Peierls structural transition it is necessary that the crystal 
have pronounced quasi-one-dimensional properties and the 
carrier concentration does not prevails strongly over the 
stoichiometric one.     
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