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I. INTRODUCTION 

Properties of atoms and excitons are dramatically 

changed in strong magnetic fields, such that the distance 

between Landau levels 
c , exceeds the corresponding 

Rydberg energies 
yR and the magnetic length 

/l c eH is small compared to their Bohr radii [1,2]. 

Even more interesting phenomena are exhibited in the case 

of two-dimensional (2D) electron systems due to the 

quenching of the kinetic energy at high magnetic fields, with 

the representative example being integer and fractional 

Quantum Hall effects [3-5]. The discovery of the FQHE [6-

8] changed fundamentally the established concepts about 

charged elementary excitations in solids [5]. The notion of 

the incompressible quantum liquid (IQL) was introduced in 

Ref.[7] as a homogeneous phase with the quantized densities 

/v p q , where pis an integer and 1q   is odd having 

charged elementary excitations with a fractional charge 

* /e e q  . These quasiparticles were named as anyons. A 

classification for free anyons and their hierarchy were 

studied in [9,10]. An alternative concept to hierarchical 

scheme was proposed in [11], where the notion of composite 

fermions (CF) was introduced. The CF consists from the 

electron bound to an even number of flux quanta. In the 

frame of this concept the FQHE of electrons can be 

physically understood as a manifestation of the IQHE of CFs 

[11]. The statistics of anyons was determined in [10,12]. It 

was established that the wave function of the system changes 

by a complex phase factor exp[ ]i , when the 

quasiparticles are interchanged. For bosons 0  , for 

fermions 1   and for anyons with * /3e e   their 

statistical charge is 1/3   . As was shown in Ref.[13], 

there were no soft branches of neutral excitations in IQL. 

The energy gap   for formation of a quasielectron-

quasihole pair has the scale of Coulomb energy 2 /QE e l , 

where  is the dielectric constant of the background. 

However delta was found to be small 0.1 QE . The lowest 

branch was called as magnetoroton [13] and can be modelled 

as a quasiexciton [5]. As was mentioned in [5] the traditional 

methods and concepts based either on the neglecting of the 

electron-electron interaction or on self-consistent 

approximation are inapplicable to IQL. In a strong magnetic 

field the binding energy of an exciton increases from 
yR to 

lI . 

There are two small parameters of the theory. One of them 

determines how strong the magnetic field strength H is, and 

it verifies whether the starting supposition of a strong 

magnetic field is fulfilled. This parameter is expressed by the 

ratio / 1l cI   . Here 
lI  is the magnetoexciton ionization 

potential, 
c  is the cyclotron frequency /eH c  calculated 

with the reduced mass   and the magnetic length l . 

Another small parameter has a completely different origin 

and is related with the concentration of the electron-holes(e-

h) pairs. In our case it can be expressed as a product of the 

filling factor 2vv   and of another factor 2(1 v )  which 

reflects the Pauli exclusion principle and the phase-space 

filing(PSF) effect. This compound parameter 2 2v (1 v )  in 

the case of Bose-Einstein condensed excitons can take the 

form 2 2vu , where u, v are Bogoliubov transformation 

coefficients and 2 2(1 v )u   . The both small parameters 

will be used below. But in the case of FQHE the filling 

factor 2vv   basically determines the underlying physics 

and it can not be changed arbitrarily. Instead of the 
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perturbation theory on the filling factor v  the exact 

numerical diagonalization for a few number of particles 

10N   proved to be the most powerful tool in studies of 

such systems [5]. The spherical geometry for these 

calculations was proposed [10, 14], considering a few 

number of particles on the surface of a sphere with the radius 

R Sl , so as the density of the particles on the sphere to 

be equal with the filling factor of 2DEG. The magnetic 

monopole in the center of the sphere creates a magnetic flux 

through the sphere 
02S , which is multiple to the flux 

quantum 
0 2 /c e  . The angular momentum L of a 

quantum state on the sphere and the quasimomentum k of 

the FQHE state on the plane obey the relation L Rk . 

Spherical model is characterized by continuous rotational 

group, which is analogous with the continuous translational 

symmetry in the plane.  

Properties of the symmetric 2D electron-hole (e-h) system 

(i.e. 0h  ), with equal concentrations for both 

components, with coincident matrix elements of Coulomb 

electron-electron, hole-hole and electron-hole interactions in 

a strong perpendicular magnetic field also attracted a great 

attention during last two decades [15-22]. A hidden 

symmetry and the multiplicative states were discussed in 

many papers [19, 23, 24]. The collective states such as the 

Bose-Einstein condensation (BEC) of two-dimensional 

magnetoexcitons and the formation of metallic-type 

electron-hole liquid (EHL) were investigated in [15-22]. The 

search for Bose-Einstein condensates has became a 

milestone in the condensed matter physics [25]. The 

remarkable properties of super fluids and superconductors 

are intimately related to the existence of a bosonic 

condensate of composite particles consisting of an even 

number of fermions. In highly excited semiconductors the 

role of such composite bosons is taken on by excitons, which 

are bound states of electrons and holes. Furthermore, the 

excitonic system has been viewed as a keystone system for 

exploration of the BEC phenomena, since it allows to control 

particle densities and interactions in situ. Promising 

candidates for experimental realization of such system are 

semiconductor quantum wells (QWs) [26], which have a 

number of advantages compared to the bulk systems. The 

coherent pairing of electrons and holes occupying only the 

lowest Landau levels (LLLs) was studied using the Keldysh-

Kozlov-Kopaev method and the generalized random-phase 

approximation [20, 27]. The importance of the excited 

Landau levels (ELLs) and their influence on the ground 

states of the systems was first noticed by the authors of the 

papers [16-19]. The influence of the excited Landau levels 

(ELLs) of electrons and holes was discussed in details in 

paper [21, 22]. The indirect attraction between electrons (e-

e), between holes (h-h) and between electrons and holes (e-

h) due to the virtual simultaneous quantum transitions of the 

interacting charges from LLLs to the ELLs is a result of their 

Coulomb scattering. The first step of the scattering and the 

return back to the initial states were described in the second 

order of the perturbation theory. 

 

II. HAMILTONIAN OF THE SUPPLEMENTARY 

INTERACTION 

The Hamiltonian of the Coulomb interaction of the electrons 

and holes in the frame of lowest Landau levels(LLLs) has 

the form: 
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where 
Q

W  is the Fourier transform of the Coulomb 

interaction in the frame of LLLs, ˆ
eN  and ˆ

hN  are the 

operators of the numbers of electrons and holes on the LLLs. 

They are determined below. supplĤ  is the supplementary 

indirect attractive interaction between the particle lying on 

the lowest Landau levels(LLLs) in view of  their virtual 

transitions on the excited Landau levels(ELLs) and their 

return back [22]: 
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Here the creation and annihilation operators † ,p pa a  for 

electrons and † ,q qb b  for holes were introduced. The matrix 

elements of indirect interaction ( , , )i j p q z 
 are described by 

the common expressions [22] 
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In the case of electron-electron and hole-hole interaction the 

expression (3) has the form[22]: 
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but in the case of electron-hole interaction is: 
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The Hamiltonian of supplementary indirect attractive 

interaction (2) has the form: 
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Instead of density operators for electrons and holes we can 

introduce their in-phase and in opposite-phase linear 

combinations 
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They lead to the following relations 
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and to the final expression 
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The estimations show that  
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It means that one can suppose the dependences 
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III. BOSE-EINSTEIN CONDENSATION OF 

MAGNETOEXCITONS IN TWO ALTERNATIVE 

DESCRIPTIONS 

Bose-Einstein condensation(BEC) of 2D magnetoexcitons 

was considered in Ref.[20, 21] in the frame of Keldysh-

Kozlov-Kopaev method [27], when the influence of the 

ELLs was neglected. The main results of this description 

will be remembered below.  

The creation † ( )d P  and annihilation ( )d P  operators of 

the 2D magnetoexciton have the form: 
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The energy of the two-dimensional magnetoexciton 

( )exE P  depends on the two-dimensional wave vector P  and 

forms a band with the dependence  
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To introduce the phenomenon of Bose-Einstein 

condensation (BEC) of excitons the gauge symmetry of the 

initial Hamiltonian was broken by the help of the unitary 

transformation ˆ ( )exD N  following the Keldysh-Kozlov-

Kopaev method [27]. We can shortly remember the main 

outlines of the Keldysh-Kozlov-Kopaev method [27], [33] as 

it was realized in the papers [20, 21]. The unitary 

transformation ˆ ( )exD N  was determined by the formula (8) 

[20]. Here 
exN  is the number of condensed excitons. It 

transforms the operators ,p pa b  to another ones ,p p  , as is 

shown in the formulas (13), (14) [20], and gives rise to the 

BCS-type wave function ( )g k  of the new coherent 

macroscopic state represented by the expression (10) [20]. 

These results are summarized below  
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The developed theory [20, 21] is true in the limit 
2 2v vSin , what means the restriction 2v 1 . In the frame 

of this approach the collective elementary excitations can be 

studied constructing the Green‘s functions on the base of 

operators ,p p   and having deal with the transformed 

cumbersome Hamiltonian 
†ˆ ˆ( ) ( )ex exD N HD NH . 

IV. EQUATIONS OF MOTION FOR THE TWO-

PARTICLE OPERATORS AND FOR THE 

CORRESPONDING GREEN‘S FUCTIONS 

The starting Hamiltonian in the quasiaverages theory 

approximation has the form 
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The density fluctuation operators (24) with different wave 

vectors P and Q do not commute, which is related with the 

helicity or spirality accompanying the presence of the strong 

magnetic field [18]. They are expressed by the phase factors 

in the structure of operators (6) and by the vector-product of 

two 2D wave vectors P and Q and its projection on the 

direction of the magnetic field. These properties 
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considerably influence structure of the equations of motion 

for the operators and determine new aspects of the 2D 

electron-hole (e-h) physics. 

The equation of motion for the creation and annihilation 

operators ( ),  ( )d P d P
 (12) and for the density fluctuation 

operators (8) will be deduced, when the BEC takes place on 

the state 0k  . They are: 
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Following the equations of motion (49) we will introduce 

four interconnected retarded Green‘s functions at 0T   [28, 

29] 
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  (18) 

The average  will be calculated at 0T   in HFB 

approximation using the ground state wave function ( )g k  

(14). 

The Green‘s functions (18) will be named as one-operator 

Green‘s functions because they contain in the left hand side 

of the vertical line only one summary operator of the types 

( )d P , † ( )d P , ˆ( )P  and ˆ ( )D P . At the same time these 

Green‘s functions are two-particle Green‘s functions, 

because the summary operators are expressed through the 

products of two Fermi operators. In this sense the Green‘s 

functions (18) are equivalent with the two-particle Green‘s 

functions introduced by Keldysh and Kozlov in their 

fundamental paper [27], forming the base of the theory of 

high density excitons in the electron-hole description. But in 

difference on [27] we are using the summary operators, 

which represent integrals on the wave vectors of relative 

motions. 

The equations of motion for the Green‘s functions in a 

special case, when the BEC of magnetoexcitons takes place 

on the state with 0k  , are: 
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V. DYSON EQUATION AND SELF-ENERGY PARTS 

Using Zubarev‘s procedure [29] for the Green‘s function 

we obtain a closed system of Dyson equation for the Green‘s 

functions in the forms: 
4

1 1

1

( , ) ( , ) ;j jk k

j

G P P C 


   1,2,3,4k   (20) 

The self-energy parts ( , )jk P   contain the different 

average values of the two-operator products. They were 

calculated using the ground state wave function (0)g   

taken with 0k   and have the expressions: 
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(21) 
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All these averages are extensive values proportional to N  or 

N , they essentially depend on the small parameters of the 

types 2 2vu  or 3vu , or uv . 

The cumbersome dispersion equation is expressed in general 

form by the determinant equation: 

det ( , ) 0;ij P       (22) 

We introduced some simple approximations which allow 

calculating our complicate equation (22). They are 
2 2

2( ) (0);  ( ) (0) ,  (0) 2
P l

i iP U P U e U A


     . Following 

these transformations we obtained results that are shown in 

the Figures 1, 2, 3. It is spectrum of collective elementary 

excitations. Three of them are energy branches, whereas 

another three are quasienergy branches representing the 

mirror reflection of the energy branches. Between three 

energy branches two of them are excitonic branches and one 

of them is the acoustic plasmon branch. One-exciton energy 

branch has an energy gap due to the attractive Hartree-type 

interaction terms, which it is needed to be got over during 

the excitation as well as a roton-type section in the range of 

the intermediary values of the wave vectors. At higher 

values of the wave vector its dispersion law tends to 

saturation. Another two-exciton energy branch is interpreted 

by us as being the previous one-exciton energy branch 

accompanied by the excitation of an condensate exciton with 

wave vector k=0, the extraction of which from the Hartree-

type attractive environment needs also energy.  
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Fig. 1 The exciton branches of the energy spectrum of collective elementary 

excitations of the Bose-Einstein condensed magnetoexcitons on the wave 

vector 0k  , calculated in HFBA, the filling factor 
2 0,1v 

. 
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Fig. 2. The dispersion law of acoustical plasmon branch in the presence of 

the BEC of magnetoexcitons on the wave vector 0k  , calculated in 

HFBA, filling factor 
2 0,1v  . 

The third energy branch taking part in this set is the 

acoustical plasmon branch. It reveals the absolute instability 

of the spectrum in the range of small and intermediary 

values of the wave vector k and has a very small real values 

tending to zero in the limiting case k→∞. The optical 

plasmon dispersion law is gapless with quadratic 

dependence in the range of small wave vectors and with 

saturation-type dependence in the remaining part of the 

spectrum.  
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Fig. 3. The dispersion law of optical plasmon branch in the presence of the 

BEC of magnetoexcitons on the wave vector 0k  , calculated in HFBA, 

the filling factor 
2 0,1v 

. 

 

VI. CONCLUSION 

The energy spectrum of the collective elementary 

excitations of a 2D electrom-hole (e-h) system situated in a 

strong perpendicular magnetic field in a state of Bose-

Einstein condensation (BEC) with wave vector 0k   was 

investigated in the frame of Bogoliubov theory of 

quasiaveraes. The starting Hamiltonian describing the e-h 

system contains not only the Coulomb interaction between 

the particles lying on the lowest Landau levels, but also the 

supplementary interaction due to their virtual quantum 

transitions from the LLLs to the excited Landau levels and 

return back. This supplementary interaction generates after 

the averaging on the ground state BCS-type wave function 

the direct Hartree-type terms with attractive character, the 

exchange Fock-type terms giving rise to repulsion as well as 

the similar terms arising after the Bogoliubov u v  

transformation. The interplay of these three parameters gives 

rise to the resulting different from zero interaction between 

the magnetoexcitons with wave vector 0k   and to stability 

of their BEC as regards the collapse. It influences also on the 

energy spectrum as well as on the collective elementary 

excitations. It consists from four branches. Two of them are 

excitonic-type branches, one of them being the usual energy 

branch whereas the second one is the quasienergy branch 

representing the mirror reflection of the energy branch, 

which will be described below. Another two branches are the 

optical and acoustical plasmon branches. The exciton energy 

branch has an energy gap due to the attractive interaction 

terms, which is needed to be got over during the excitation 

as well as a roton-type section in the range of intermediary 

values of the wave vectors. At higher values of wave vector 

its dispersion law tends to saturation. The optical plasmon 

dispersion law is gapless with quadratic dependence in the 

range of small wave vectors and with saturation-type 

dependence in the remaining part of the spectrum. The 
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acoustical plasmon branch reveals the absolute instability of 

the spectrum in the range of small and intermediary values 

of the wave vectors. In the remaining range of the wave 

vectors the acoustical plasmon branch has a very small real 

value of the energy spectrum tending to zero in the limiting 

case of great wave vectors.  
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