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1. Introduction  

In the paper [1] it was introduced EB-Min 
distribution compounding exponentially 
distributed lifetimes with zero truncated 
binomially distributed as r.v. as alternative to the 
EP-Min lifetime distribution introduced in [2] by 
mixing the same lifetime with zero truncated 
Poisson distributed r.v. in the both cases lifetimes 
are represented as minimum of k independent 
identically exponentially distributed r.v.,  

,...2,1=k  . Our interest is to know how look 
their distributions if we substitute minimum by 
maximum and to study possible connections 
between them. 

2. Distribution of r.v. 
),...,,max( 21 KWWW  for random K  

First of all, let us deduce a general formula for 

distribution of r.v. ),...,,max( 21 KWWW , 

where  �Wi�i�1 are independent identically 
distributed random variables (i.i.d.r.v.) andK is a 
discrete r.v. such that { } 1),...2,1( =∈KP . So, 
we consider that distribution function (d.f.) of r.v. 

iW  is  )()( xWxF i ≤= P , 1≥i . Then, due of 

independence of r.v. 1)( ≥iiW ,the d.f. of r.v. 
),...,,max( 21 kk WWWY = is  
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This means that d.f. of 

r.v. ),...,,max( 21 KWWWY =  is a mixture of 

d.f. )( xF
kY  with respect to the distribution of 

r.v. K . Indeed, 
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This formula show us that, if 1)( ≥iiW  are r.v. 
of absolutely continuous type, then Y  is a r.v. of 
the same type and its probability density function 
(p.d.f.) is  
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3. EB-Max distribution  

Now we may apply formulas (1)-(2) to 
introduce a new lifetime distribution called EB-
Max distribution. 
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Proposition 1.  If 1)( ≥iiW  are  independent 
identically exponentially distributed r.v. with 
parameter λ , 0>λ ,  i.e.,  
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− ixIexWxF x
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λP  

and K  is a zero truncated binomially 
distributed r.v., i.e., 
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then d.f. of r.v. ),...,,max( 21 KWWWY = , is 
given by formula 
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and p.d.f. of r.v.Y is 
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Proof. From (1) we have that d.f. 
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So, p.d.f.  
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Corollary. If Y  is the EB-Max distributed r.v. 
then 

 a�  median value of Y is 
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 c�  mean value of Y is 
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 d�  variance of Y is 
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 e�  survival function is 
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Figure.1. The p.d.f. of EB-Max distribution for 
different values of parameters. 
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Figure 2. The p.d.f. of EB-Max distribution for 
different values of parameters. 

4. Approximating EB distributions 
by EP distributions  

For the same lifetimes 1)( ≥iiW , substituting 
zero truncated binomial distribution for r.v. K  
by zero truncated Poisson distribution with 
parameter µ , 0>µ , i.e.,  
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authors of the work  [3]  was introduced another 
new lifetime distribution called EP-Max 
distribution given by formula 
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In the similar ways in [1]-[2] it was introduced 
EB-Min and EP-Min life time distributions. 
According to the [1] EB-Min distribution is given 
by d.f. 
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and according to the [2] EP-Min distribution is 
given by d.f. 
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As we know, Poisson's Limit Theorem  [4]  
show us that, in some conditions, binomial 

distribution may by approximated by Poisson 
distribution. This fact suggest us that between d.f.  

)(max xU   and  )(max xV   and, on the other 

hand, between d.f. )(min xU  and )(min xV  does 
exist the similar connections. Indeed, it is true the 
following 

 

Proposition (Poisson's Limit Theorem for EB 
an EP distributions). In the conditions of the 
Poisson's Limit Theorem, i.e., if +∞→n  and 

0→p  in such way that µ→np , 0>µ , then  
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Proof. Let us observe that in the conditions 
+∞→n  and 0→p   in such way that µ→np  ,  

0>µ , in fact our Proposition is a consequence of 
the following equalities: 
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