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I. INTRODUCTION 

The microcavity exciton-polariton Bose-Einstein 
condensation (BEC) described in the Refs. [1-5] emerged in 
the last decades as a new promising direction of the exciton 
BEC in solids [6-9]. The polariton, whose notion was 
introduced by Hopfield [10], is a quasiparticle in solids with 
a half-matter and half-light composition. Their properties in 
microcavities were described in Ref. [11]. The cavity 
polaritons have integer spin and can reveal bosonic 
properties responsible for stimulated scattering, polariton 
lasing, Bose-Einstein condensation (BEC) and 
superfluidity [12]. In recent years much attention is attracted 
to the complexity of the phenomena related to the influence 
of the external magnetic field on the microcavity polaritons 
[12-17]. There is a rich variety of nonlinear effects induced 
by magnetic field. One of them is the Zeeman splitting of the 
exciton eigenstates when the magnetic field is applied in 
Faraday geometry [12, 13] as well as the suppression of the 
polariton superfluidity and spin Meissner effect [14, 16]. The 
evolution of the circularly polarized nonequilibrium Bose-
Einstein condensates of spinor-polaritons in the excited spin 
state at 3 TB  , and in the ground spin state at 3 TB   was 
studied [15]. The TE-TM splitting of the cavity modes [12] 
and the Faraday rotation of the plane polarization of the light 
passing through the microcavity was observed 
experimentally. The change of the relative weights of 
photonic and excitonic components within the given state 
depending on the strength of the magnetic field [17] was 
investigated theoretically. The combined exciton-cyclotron 
resonance in quantum wells (QWs) was studied in 
Refs. [18, 19] in a strong magnetic fields exceeding the  

 
 

binding energies of the 2D Wannier-Mott excitons and of 
magnetoexcitons. 

A comprehensive review by Savona et al. [20] gives the 
theoretical analysis of the optical properties of 
semiconductor quantum wells (QWs) embedded in a planar 
Fabri-Perot (F-P) microcavity. F-P resonator is a simplest 
structure for the confinement of the electromagnetic field 
(EMF). The planar F-P resonator has the parallel mirrors 

separated by some dielectric spacer with thickness cL  and 

refraction index cn , inside of which the QW with much 

smaller width QWL  may be embedded. 

The high finesse semiconductor microcavities with 
distributed Brag reflectors and feasibility to obtain the 
needed information were performed. The EMF can exist 
inside F-P resonator in the condition of a constructive 
interference between the successive passes of the 
propagating waves. 

Following the Ref. [20] we will consider the two-

dimensional (2D) exciton with frequency ||( )ex k  and 2D 

wave vector ||k  oriented in the plane of the QW interacting 

with the photon propagating in the three-dimensional (3D) 

space with an arbitrary oriented wave vector || 3 zk k a k  , 

where 3a  is the unit vector perpendicular to the QW plane. 

The photon energy in the media with refraction index cn  has 

the dependence 
2 2

|| ||( ) ( , ) ( / )z c zk k k c n k k    , where 

c  is the light velocity in vacuum. Due to the translational 
symmetry along the QW plane the exciton-photon 
interaction obeys the conservation law of the in-plane wave 

vector ||k . 
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The polaritons in microcavity were discussed in Ref. [20]. 
Their energy spectrum is represented in fig. 2. 
Recently [12-17] the investigations of the microcavity 
polaritons under the influence of a magnetic fields were 
initiated. The external magnetic field is oriented along the 
axis of the microcavity and it is perpendicular to the surface 
of the semiconductor quantum well (QW) embedded inside 
the resonator. Until recently magnetic fields about 2-3 T 
were used [15]. They are not too high, and the two-
dimensional (2D) excitons did not change their electron 
structure remaining the Wannier-Mott excitons, but with 
Zeeman and diamagnetic effects. In the presence of a strong 
magnetic field about 10 T, the electron-hole (e-h) pairs in 
GaAs QW will form the magnetoexcitons with completely 
different structure and interaction between them. The 
Hamiltonian of the electron-radiation interaction in the 2D 
electron structures of the type GaAs QWs in a strong 
perpendicular magnetic field describing only the band-to-
band quantum transitions was obtained in Ref. [18]. Here the 
electrons of the p -type valence band situated on the given 

Landau levels undergo quantum transitions to the s -type 
conduction band on another levels of Landau quantization. 
Such Hamiltonian may be interpreted as describing the 
creation and annihilation of the e-h pairs with definite 
numbers of Landau levels occupied by the partners of the 
pair. The transitions are accompanied by the creation or 
annihilation of the photons. 

Contrary to this approach in Ref. [17] was proposed the 
physical model based on the semiconductor QW but with the 
intra-band instead of inter-band quantum transitions. In fact 
these two approaches are complementary each other. The 
aim of Ref. [17] was to determine the conditions of the Bose-
Einstein condensation (BEC) of 2D magnetopolaritons in a 
trap. For this purpose the Hamiltonian describing the 
interaction of 2D electrons in the condition of intra-band 
excitation with the photons confined by the microcavity was 
derived. The mixed magnetoexciton-photon states named 
magnetoexciton-polaritons or magnetopolaritons were 
introduced. But these new states happened to be related in 
Ref. [17] with the intra-band and not with the inter-band 
excitations in QWs. It was shown that the effective polariton 

mass increases with the magnetic field strength B  as 
1/2 ,B  

whereas the critical temperature of the BEC of intra-band 

magnetopolaritons in a trap decreases as 
1/4.~cT B

 It 

increases with the increase of the spring constant of the 
parabolic trap. The constant of the magnetoexciton-photon 
interaction, which determines the Rabi splitting of the intra-

band magnetopolariton branches is proportional to 
1/2B

 in 
graphene, while in a QW it does not depend on the magnetic 
field when it is strong [17]. The last result concerning the 
QW has to be compared with the results of Ref. [18], where 
the inter-band quantum transitions were considered. In the 
last paper it was shown and will be demonstrated below that 

the Rabi frequency is proportional to 
1/2.B  

As was mentioned above the apparent contradiction 
between two papers can be resolved if one takes into account 
that in Ref. [17] the intra-band quantum transitions in fact 
were considered. They are relevant for the graphene-type 
structures with a small band gap in comparison with the 
cyclotron energy. One can remember and it will be 
underlined below that the inter-band optical transitions are 
characterized in the absence of the magnetic field by the 

matrix element cvP  calculated with A  perturbation using 

the periodic parts of the electron Bloch functions. They 
determine also the band gap of the semiconductor QW. The 
"strong" magnetic field is strong only in comparison with the 

exciton binding energy but it is very weak in comparison 
with the band gap in GaAs-type QWs. The matrix element 

cvP  will be not changed by the "strong" magnetic field and it 

must be present in any theoretical calculations of the optical 
inter-band quantum transitions in semiconductors. Only in 
the case of intra-band quantum transitions the periodic parts 

of the same band Bloch functions without AP  perturbation 

give rise to normalization integral. In this case the AP  
perturbation is calculated with the envelope functions 
determined by the Landau quantization functions with 
quantum numbers n  and 'n , which differ by unity. Exactly 
this variant was realized in Ref. [17] and was not considered 
in Ref. [18]. Instead of it we consider for the first time the 
magnetoexciton-photon interaction related to the band-to-
band optical quantum transitions. 

II. HAMILTONIAN OF THE MAGNETOEXCITON-
PHOTON INTERACTION 

In the Ref. [18] the Hamiltonian of the electron-radiation 
interaction in the second quantization representation for the 
case of two-dimensional (2D) coplanar electron-hole (e-h) 
system in a strong perpendicular magnetic field was 
discussed. The s -type conduction-band electrons with spin 

projections 1/ 2zs    along the magnetic field direction 

and the heavy holes with the total momentum projections 

3 / 2zj    in the p -type valence band were taken into 

account. Their orbital Bloch wave functions are similar to 

( )x iy  expressions with the orbital momentum projections 

1M    on the same selected direction. The Landau 
quantization of the 2D electrons and holes is described in the 
Landau gauge with oscillator type motion in one in-plane 

direction characterized by the quantum numbers en  and hn  

and with the free translational motion described by the uni-
dimensional (1D) wave numbers p  and q  in another in-

plane direction perpendicular to the previous one. The 

electron and hole creation and annihilation operators , ,z es n pa

, , ,z es n pa , and , ,z hj n qb , , ,z hj n qb  were introduced 

correspondingly. The Zeeman effect and the Rashba spin-
orbit coupling are not taken into account below. 

The electrons and holes have a free orbital motion on the 
surface of the layer with the area S  and are completely 

confined in 3a  direction. The degeneracy of their Landau 

levels equals to 
2
0/ (2 )N S l , where 0l  is the magnetic 

length. In contrast, the photons are supposed to move in any 
direction in the three-dimensional (3D) space with the wave 

vector k  arbitrary oriented as regards the 2D layer as it is 
represented in the Fig. 1 reproduced from the Ref. [18]. 

There are three unit vectors 1a , 2a , 3a , the first two being 

in-plane oriented whereas the third 3a  is perpendicular to 

the layer. We will use the 3D and 2D wave vectors k  and 

||k  and will introduce the circular polarization vectors M  

for the valence electrons, heavy holes and magnetoexcitons 
as follows 
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Fig. 1. The reciprocal orientations of the circularly 

polarized vectors 
k

  and M , reproduced from the 

Ref. [18]. 
 

 
Fig. 2. Two branches of the cavity polaritons, reproduced 

from the lecture [21]. 
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(1) 

The photons are characterized by two linear vectors ,k je  or 

by two circular polarization vectors 
k

   obeying the 

transversality conditions: 

,,1 ,2

1
( ); ( · ) 0; 1,2.

2
k jk k k

e ie e k j            

(2) 
The photon creation and annihilation operators can be 
introduced in two different polarizations as follows 
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(3) 

The reciprocal orientations of the circular polarizations 
k

   

and M  will determine the values of the scalar products 

( · )Mk
   . The electron-radiation interaction describing only 

the band-to-band quantum transitions with the participation 
of the e-h pairs in the presence of a strong perpendicular 
magnetic field was obtained in Ref. [18] and can be used as 
initial expression for obtaining the interaction of 2D 
magnetoexcitons with the electromagnetic field. Following 
the formula (12) of Ref. [18] we have 

ˆ
e radH    

0 ,( , , )

2

e hx y z
k n n pk k k k

e

m V





 
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 
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 
† †
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(4) 

Here volume V  of the 3D space can be represented as the 

product zV SL , where zL  is the size of the 3D space in 

the direction 3a . In the case of microcavity z cL L . The 

matrix elements cvP  of the band-to-band quantum transition 

are determined by the formula (A7) of Ref. [18]. In the case 
of conduction and valence bands of different parities it is 
assumed to be of allowed type according to the classification 
of Elliott [22, 23] and does not depend on the wave vectors. 

The functions  , ; , ;e h x yn p n p k k   were determined by 

the formula (A11) of Ref. [18] and are also listed below 

0

|| , , , , ,
0

1
( , ) ( ) ( ) ) ( ;y y

x

ik

cv c s g v p x g k
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 
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2
0

||, ; , ; , ; ;yik pl

e h x y e hn p n p k k e n n k     

              2
|| 0, ; ( ) ,y

e h

ik y

e h n n xn n k dy y y k l e 







       

(5) 

where ( )
en y  and ( )

hn y  are the Landau quantization 

functions, whereas the functions , , ( )c s gU   and 

, , , ( )
xv p x g kU   are the periodic parts of the electron Bloch 

functions in the conduction and valence bands. The last 

integral in the case || 0k   is the normalization or 

orthogonality integral. The dipole active transitions ( || 0k  ) 

take place only in the case when e hn n . It means that the 

2D magnetoexciton can be created in the dipole-active 
transition only if it is constructed by the electron and hole on 

the Landau levels with the same quantum numbers e hn n . 

In other words, the valence electron from the Landau level of 

quantization with a given number vn  can be excited by light 

in the conduction band only on the level of Landau 
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quantization with the same number c vn n . It is true only 

for the dipole-active transitions. In the case of quadrupole-
active transitions when the amplitudes of the quantum 
transitions (5) are proportional to the projections of the wave 

vector ||k  the selection rules are 1e hn n  . Instead of e-h 

pair representation (4) we have introduced the 
magnetoexciton creation operator depending on the wave 

vector ||k , on the orbital momentum projection M  and on 

the Landau quantization numbers n  and m  [24, 25] as 
follows 

2
0† † †

||
, , , ,

2 2

1
( , , , ) ; .y

x x
z z

ik tl

ex z zk k
s n t j m t

t

k M n m e a b s j M
N  

     

(6) 
The obtained Hamiltonian in the magnetoexciton 
representation looks as 

||
0 0 1 , 0( , )
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(7) 
The interaction constant in the case of dipole-active 

transitions is proportional to 01/ l  and increases as B  

when the magnetic field strength B  increases. In the case of 
quadrupole-active transitions it does not depend on ,B  but is 

proportional to ||| |k . The first two resonance terms describe 

the annihilation of the photon with circular polarization 
k

   

and the creation of the magnetoexciton with the circular 

polarization M  and vice versa. The abilities of the photon 

to effectuate these transformations are determined by the 

scalar products  *· .Mk
   The next two addenda are the 

anti-resonance terms describing the simultaneous creation or 
annihilation of the both partners namely of the photon and of 

the magnetoexciton with opposite sign 2D wave vectors ||k  

and ||k , and with opposite sign orbital momentum 

projections M  and M . 
Side by side with the electron-radiation interaction of the 

type ( )·

i

i iA r   taken into account above there is also 

another interaction term proportional to the square of the 

vector potential ( )iA r  of the electromagnetic field in the 

form 2 ( )i

i

A r . It gives rise to a supplementary quadratic 

form in the photon operators containing the resonance and 
anti-resonance terms [23], which were neglected. 

The interaction Hamiltonian must be supplemented by the 

Hamiltonian 0H  of the free magnetoexcitons and photons 

||

0 || || |
†

|

,

ˆ ˆ( , , , ) ( , , , ) ( , , , )ex ex ex

M n mk

H E k M n m k M n m k M n m  
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†
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†

,[ ]
z

k k k k k

k k k

C C C C
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        (8) 

where || ||( , , , ) ( , , , )ex exE k M n m k M n m  is the energy of 

the 2D magnetoexciton. It contains the contributions of the 

cyclotron energies ce chn m   of the e-h pair forming 

the magnetoexciton and of the Coulomb e-h interaction in 
the presence of a strong magnetic field. The cyclotron 

frequencies ce  and ch  increase linearly as a function of 

B , whereas the Coulomb energy increases as a B  in the 
same way as the constant of the magnetoexciton-photon 
interaction. We supposed that the Coulomb e-h interaction 
leading to the formation of the magnetoexciton is greater 
than the magnetoexciton-photon interaction leading to the 
formation of the magnetopolariton. It means that the 
ionization potential of the magnetoexciton 

2
0( ) / 2lI e l  , where   is the dielectric constant, is 

greater than the Rabi energy | |R  introduced in the next 

section. The magnetoexciton energy does not depend on M  
when the Zeeman effect is not taken into account. The 
photon frequency depends on the 3D wave vector 

2 2
||( ) zk

c n k k   . The full Hamiltonian describing the 

magnetoexciton-polariton is 

0 .magex phH H H         (9) 

III. MAGNETOEXCITON-POLARITON IN 

MICROCAVITY 

The dispersion law of the magnetoexciton polariton in a 
rotating way approximation and in the case of dipole-active 
transitions can be obtained neglecting by the anti-resonance 

terms and all corrections proportional to ||k  in the case 

0e hn n  . When zk  and zL  have the well defined values 

as in the case of microcavity namely z cL L  and 

/z ck L  the Rabi frequency in the case of dipole 

transition is: 

           
0 0

1
| | | (0) | .R cv

c k

e
P

m l L



     

(10) 
In the case of quadrupole transitions a supplementary factor 

|| 0| |k l  appears and R  is proportional to ||| |k  but do not 

depend on magnetic field strength. 

In the Faraday geometry, when the wave vector k  is 

oriented along the axis of microcavity, 3( / )ck a L N , the 

light with circular polarization 
k

   (
k

  ) excites only he 

magnetoexcitons with the orbital quantum number 1M   (

1M   ). This alignment of the magnetoexcitons is the 
manifestation of the optical orientation phenomena. In the 

case of slight deviation of the light wave vector k  from the 

Faraday geometry with ||| | / ck L , the mentioned above 

orbital selection rule is only approximately true. A second 
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magnetoexciton state will be also excited, but with a much 
smaller amplitude, so that it will be neglected below. 

The terms of the Hamiltonian (7) with the given wave 

vector ||k  may be separated. To simplify them we use the 

following denotations: 

||
|| || ||, / , ,

ˆ ˆ( , ,0,0) ( ); ( );
c

ex ex k L k
k M k C C C k

  
     

||
|| || ||/ ,

( , ,0,0) ( ); ( ).
c

ex ex phk L k
E k M k k


         

(11) 
The equations of motion in this approximation are 

||

|| || ||

ˆ ( )
( ) ( ) ( )

ex

ex ex R

d k
i k k C k

dt
 


    

||

|| || ||

( )
( ) ( ) ( ).ph R ex

dC k
i k C k k

dt
        

(12) 
For the stationary conditions they are 

|| || ||
ˆ( ( ) ) ( ) ( ) 0ex ex Rk k C k       

     || || ||( ( ) ) ( ) ( ) 0.ph R exk C k k          

(13) 
Their solutions give rise to magnetoexciton-polariton 
dispersion branches 

   
|| || || ||2 2

( ) ( ) ( ) ( )
| | ( ) ,

2 2

ex ph ex ph

R

k k k k   
 

 
  

which are fully consistent with Refs. [5, 20]. 
The matrix element of the band-to-band quantum transition 

| |cvP  may be expressed through the oscillator strength exf  of 

the optical quantum transition from the ground state of the bulk 
crystal to the 3D Wannier-Mott exciton state using the formula  

2 2 2 3 3
0 0 0 0v(2 ) | (0) | | (0) | ; | (0) 1 ) v| ( ; ,ex g cv ex ex exf m E P a a    

where gE  is the semiconductor energy gap, 0v  is the volume 

of the lattice cell and (0)ex  is the wave function of the 

relative e-h motion with the Bohr radius exa . If one supposes 

the parameters of the GaAs-type crystal ~ 1.5 eVgE , 

6~10  cmexa 
, 

8
0 ~ 2 10  cma   and 

6~ 10exf 
, the value 

20| (0) | 2 10  g cm/seccvP    will be found. Together with the 

parameters of the light ~k gE , resonator 

54 10  cmcL    and magnetic field strength 
6

0 ~ 10  cml 
 

the Rabi frequency of the order of magnitude 
12 -1~ 10  secR  

was calculated. 
IV. CONCLUSION 

The Hamiltonian describing the interaction of the two-
dimensional magnetoexcitons with the photons 
propagating without confinement in an arbitrary direction 
of the three-dimensional space was deduced. Only the 
inter-band optical quantum transitions were taken into 
account. In this case the electron lying on the Landau 

level with quantum number hn in the p -type valence 

band is transferred under the influence of light on the 

Landau level with number en  in the s -type conduction 

band of the GaAs-type 2D layer and vice versa. The 2D 
electron-hole pairs and magnetoexcitons arising in these 

conditions are characterized by the numbers en  and hn  

of the Landau quantizations, by the orbital momentum 

projection M  of the hole in the frame of p -type valence 

band and by the resultant 2D wave vector ||k  of the 

electron-hole pair and magnetoexciton. The light is 
characterized by two components of the wave vector 

|| 3 zk k a k  , where one is in-plane component ||k  and 

another one is oriented perpendicularly to the layer plane. 
When the semiconductor layer is embedded into the 

microresonator the zk  component of the light wave 

vector becomes quantized ( / )z ck L N , where cL  is 

the length of the resonator and 1N   , 2  . 
The Rabi frequency which characterizes the 

magnetoexciton-photon interaction is proportional to the 

matrix element (0)cvP  in the case of allowed-type band-

to-band quantum transitions. The selection rules are 

e hn n  and 1e hn n   for the dipole and quadrupole 

quantum transitions correspondingly. The Rabi constant is 

proportional to B  in the case of dipole transitions and 

does not depend on B  in the case of quadrupole 
transitions. 

The dispersion laws of the magnetopolaritons in 
microcavity were deduced. The estimations of the 
relevant parameters were presented. 
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