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I. INTRODUCTION 

For the wide practical perspectives the intense theoretical 

studies of radiation characteristics of point emitters 

(dipoles) placed near small metal particles had been 

carried out in last decades. It had been shown that due to 

resonant excitation of plasma oscillations in such particles 

the characteristic times of both radiative and nonradiative 

losses of the emitters depend on the distance between the 

emitter and the metal particle, as well as on particle size. 

As a result, the efficiency of the emitter radiation depends 

non-monotonically on the distance [1-3]. Considering the 

emitter as a point dipole is completely justified in the case 

of isolated atom or molecule luminophore. However, by 

studying radiation of semiconductor QD in a vicinity of 

metal NP the QD a priori can not be considered as a point 

dipole (especially at comparable QD and NP sizes). 

Therefore, all previous theoretical approaches in fact can 

not be directly applied to this system. The goal of this 

work is just to develop a model allowing calculations for 

the case of semiconductor QDs in a vicinity of metal NPs.  

 

 

 

We have shown that despite semiconductor QD as a 

whole can not be considered as a point dipole, its  

 

emission actually can be described as emission of a set of 

point dipoles with unit cell size as “point” size. Therefore, 

to calculate the emission characteristics of semiconductor 

QD in a vicinity of the metal NP it is necessary to 

consider previously the contribution to the emission of 

arbitrary unit cell in QD, and then integrate the 

contributions from all QD unit cells with corresponding 

weight factors in the form of the product of the electron 

and hole size-quantized envelope wave functions. In this 

paper, we have considered the first part of this problem, 

which is reduced to the calculation of the electromagnetic 

fields of a point dipole radiating inside the semiconductor 

QD in the case when QD is located in an immediate 

vicinity of metal NP. The consideration is made in a 

single scattering approximation. Multiple scatterings of 

electromagnetic field in “QD + NP” structure could be 

accounted too using the obtained relations between 

coefficients of the field multipole expansions in two 

different spherical coordinate systems with the centers in 

QD and NP. 

 

II. GROUNDS FOR THE MODEL OF QD RADIATION 

AS RADIATION OF AN ENSEMBLE OF 

OSCILLATING POINT DIPOLES INSIDE QD 

 

Consider QD multi-electron system when one of the 

electrons is excited from a state associated with the 

valence band of bulk material, from which QD is formed, 

into the state associated with conduction band. In the 
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linear approximation, the solution of time-dependent 

Schrцdinger equation can be written in this case as 

follows: 

 0 0 1 0( ) exp( i ) exp i ( )Ψ t Ψ t Ψ t        , (1) 

where 
0Ψ  is the wave-function of the ground state of 

multi-electron system with Hartree-Fock energy 
0 , 

1Ψ  

is the correction to the wave function 
0Ψ  due to specified 

perturbation,   is the energy of the perturbation. Wave 

function 
0Ψ  can be written as antisymmetrized product of 

one-electron orthonormal Wannier lattice-site functions of 

the valence band [4]:  

   0 1 1, ,
, ,

ˆ( ,.. ) 1 ! ( 1) (..) ,.. ,pA V

NK NK

p

Ψ NK p b
   

 

   l
l

ξ ξ ξ ξ
, (2) 

where p̂  is the operator of a particular permutation from 

total  !NK  permutations, at which 
NK  space-spin 

electron variables  1 2, , ... , NK
ξ ξ ξ  are distributed over 

NK -fold product of valence-band lattice-site Wannier 

functions )()~()
~

( ,~,,~ sbb VV

 rξ nn   as their arguments ( r~  is 

the spatial and s the spin variable), Ар is multiplicity of 

the permutation p, N is the total number of lattice sites 

(nodes, unit cells) in the QD, l
~

 is one of these lattice 

sites ( l
~

 in (2) runs over all N sites of QD crystal lattice), 

  is a symbol of the electron spin state for a given 

degenerate state of the valence band,  is a symbol 

characterizing the degeneracy of the valence-band lattice-

site Wannier functions over crystallographic directions (in 

cubic crystals all three crystallographic directions are 

degenerated), К  is the multiplicity of degeneracy over 

electron spin and the crystallographic directions. Here and 

below, the tilde over the variables means that they are 

written in the coordinate system with the center in the 

semiconductor QD. 

The wave function 
1Ψ  can be written as a superposition of 

antisymmetrized 



ts
~~ -states in which one of the 

electrons of the multi-electron system is transferred from 

the localized in the site s~   -Wannier state of the 

valence band Vb  ,,~s
 into the localized in the site t

~
   -

Wannier state of the conduction band Cb
 ,

~
t

: 

1 1 1

, ,
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 st st
s t
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The 
 

ts
~~C  coefficients are the probability amplitudes of 

such  

ts
~~

-states, 

   1, , ,
, , , ,
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
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ξ ξ
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In an analogy with [5,6] let us introduce the mean dipole 

moment ),
~

( tLP  of the lattice site L
~

, which arises due to 

above specified distortion of the QD multi-electron 

system,  

0
ˆ( , ) ( ) ( ) ( ) et t p t d   P L L  ,     (5) 

where the integration is taken in all 
NK  variables of  

 

 

 

multi-electron system, )
~

(ˆ
0 Lp  is the dipole moment 

operator for the site L
~

,  

 
i

ii Tep )
~~()

~~()
~

(ˆ
0 LrLrL  . (6) 

In this formula the sum is taken over all N spatial 

variables of the electron subsystem, function ( )iT r L  

equals zero if spatial variable 
ir~  turns out to be outside 

the unit cell at the node L
~

 and ( ) 1iT  r L  if 
ir~  is 

within the unit cell. 

Carrying out integration in (5) for a chosen particular case 

of spin states   and    (with an account for the electron-

hole exchange interaction the perturbation energy   

can depend on these spin states), the following expression 

could be obtained: 

0

,

, , ( )

( , ) ( ) ( ) ( ) exp( i )C V

V

t e C b b d t





    ss t t
s t L

P L r r L r r ,  (7) 

where integration is taken over the volume 
0V  of the unit 

cell at the node L
~

. Since Wannier functions are strongly 

localized within the respective unit cells at the nodes s  

and t  the only option when the integral in (7) is not zero 

corresponds to Lts
~~~   case. Thus, introducing the 

notation 
p  for the independent on a particular unit cell s  

transition dipole moment,  




)~(

,~~

0

~)~(~)~(

s

s rrrrp

V

VC

s dbbe 

 ,            (8) 

the following expression for the mean dipole moment 

),
~

( tLP  of the lattice site L
~

 can be obtained:  

( , ) exp( i )t C t




  LL
P L p  ,         (9) 

i.e. ),
~

( tLP  is formed by the “node” dipole moments p  

with weight coefficients 

LL
~~C . By passing from discrete (

L ) to continuous (
dr ) variable the discrete amplitude 



LL
~~C  of electron-hole transition in the node L

~
 transforms 

into the exciton envelope wave function )~,~( ddexΨ rr


. In 

the first approximation this function takes a form of the 

product of electron and hole wave functions of size-

quantized states in QD, ( , ) ( ) ( )ex d d e d h dΨ  r r r r  [7, 8]. 

Accordingly, under such passing to continuous variables 

the “node” dipole in the sum (9) transforms into the 

located at 
dr

~  “point” radiating dipole exp( i )t p , and 

by summing contributions of all QD unit cells into the 

total QD radiation the discrete sums of the type 

( )C f LL

L

L  should be replaced by the integrals 

3( , ) ( )ex d d d dΨ f d r

 r r r  . 

 

III. MODEL OF THE SYSTEM 

 

Consider a system consisting of three mediums (figure 1). 
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1) Spherical metal NP of the radius R1 characterized by a 

non-local permittivity ),(1 k . Using non-local 

permittivity instead of local one )(1  , as well as account 

for additional electron scattering on the NP walls allows 

calculations for NP of extremely small sizes (less than 10 

nm in diameter) by the methods of classical macroscopic 

electrodynamics [9]. In line with [9-11] in optical range of 

frequencies ),(1 k  can be expressed as: 

),()(1),( )()(

1 kk LT

plib

LT    ,  (10) 

where second term on the right-hand side is due to 

interband electronic transitions (the contribution of bound 

electrons), and the third term, 

  ( ) 2 2 2

1 ( )( , ) i /T L

pl p F T Lk Γ Av R k          
 

 ,  (11) 

is due to electronic transitions within the conduction band 

(the contribution of free electrons). Indices T and L are 

used to denote transverse (T) and longitudinal (L) 

components of the permittivity. Within the hydrodynamic 

model 
FL v5/3 , where 

Fv  is the Fermi velocity (

Fv  1.4∙10
8
 cm/s in the case of gold or silver), while 

T  

equals zero and therefore 
1 1( , ) ( ,0)T Tk    . The decay 

constant of the bulk material /F fΓ v l , where 
fl  is the 

mean free path of electrons, constant A takes values in the 

0.1  0.7 range [9] depending on the mechanism of 

electron scattering on the NP walls and other factors, 
 mnep /4 22   is the plasma frequency of the NP 

material. At a given frequency ω the wave number 
Tk  of 

the transverse electromagnetic waves in the NP could be 

determined from the condition 22

1

2 /)0,( ck T

T  , while 

the wave number 
Lk  of the longitudinal electric 

oscillations from the condition 0),(1 L

L k . 

2) Spherical semiconductor QD of the radius R2 with 

background permittivity 2. The distance between QD and 

NP centers is 
1 2D R R  .  

3) Barrier matrix with permittivity 
3 . 

The formulated electrodynamic problem for the 

oscillating point dipole p inside QD is considered below 

using Jackson formalism [12], where vector spherical 

harmonics ( )lm ΩX  are used in multipole expansions of 

transverse electric and magnetic fields. As for the 

calculation of electromagnetic fields in QD+NP system 

the boundary conditions on both semiconductor QD and 

metal NP spherical surfaces should be satisfied, the main 

problem becomes the establishing a connection between 

the multipole components of the fields in two different 

spherical coordinate system with the centers О1 in metal 

NP and О2 in semiconductor QD. 

 

IV. RELATIONSHIP BETWEEN MULTIPOLE 

EXPANSIONS OF ELECTROMAGNETIC FIELD IN 

TWO COORDINATE SYSTEMS 

 

By calculating electromagnetic fields in nonspherical 

QD+NP system the best solution would be to use 

separately spherical symmetry of QD and NP. According 

to [12] in the n-th material with permittivity n the electric 

and magnetic fields in spherically symmetric cases can be 

expressed as following multipole expansions :  

 n

1 0 n

n

i
( ) ( , ) curl ( ) ( )

( , ) ( ) ( )

l

E l lm

l m l

M l lm

a l m f k r Ω
k

a l m f k r Ω





 


 




 



E r X

X

 , (12) 

 

n

1

n

0

( ) ( , ) ( ) ( )

i
( , ) curl ( ) ( )

l

E l lm

l m l

M l lm

a l m f k r Ω

a l m f k r Ω
k



 


 




 



B r X

X

, (13) 

where ck /0  , 
n0n kk  , ),( mlaE

 and ),( mlaM
 are 

the multipole amplitudes (coefficients) of the electric and 

magnetic types, respectively, )(xf l
 is the spherical 

Bessel function )(xjl  or the first kind Hankel function 

)()1( xh l
 (hereafter denoted )(xh l

 as well) or their 

combination depending on the region of space and 

asymptotic or boundary conditions that should be 

provided. Normalized vector spherical harmonics )(ΩlmX  

(symbol   means angular variables {,}) are expressed 

as follows:  

 
i ( 1)

1 1

sini ( 1)

lm r lm

lm

r
Y

l l

Y
l l

 
  

  


  
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   

X e

e e

, (14) 

   )iexp()(cos)!(4/)!()12()(
2/1

 mPmlmllΩY m

llm   are 

the normalized scalar spherical harmonics, )(xPm

l
 are the 

associated Legendre functions. Accordingly,  

 

 

n
n

n

( )
curl ( ) ( ) i ( 1) ( )

( )1
( )

( 1)

l
l lm lm r

l

lm

f k r
f k r Ω l l Y Ω

r

d rf k r
Y Ω

drl l


  




  

 

X e
. (15) 

In (14) and (15) er ,e and e are the orts of spherical 

coordinate system. The following orthogonality and 

normalization condition are used hereafter: 

( ) ( )l m lm l l m mΩ Ω dΩ  

    X X  , (16) 

 
Fig 1. Point dipole in a vicinity of metal NP; structure 
has spherical symmetry (a). Semiconductor QD in a 
vicinity of metal NP; structure isn’t spherically 
symmetric (b). 
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1
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3
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l

m

l l E d

a l m R F D a l m
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G D a l m

l l 




 
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




 




 
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

2

( 1) 1
curl [ ( )] curl[ ( )]l m lm l l m m

l l
Ω Ω dΩ

r
 

   

 
  X X  ,  (17) 

2( ) ( ) ( 1) /l m lm ll mmY Ω Y Ω dΩ l l r  

        , (18) 

( ) curl [ ( )] 0l m lmΩ Ω dΩ

   X X  , (19) 

( ) ( ) 0l m lmΩ Y Ω dΩ

   X  , (20) 

( ) ( )l m lm l l m mY Ω Y Ω dΩ  

     . (21) 

It could be found in line with [12], that for the located at 

point rd oscillating dipole )iexp( tp  n  (
n is a unit 

vector along the dipole direction) the multipole 

coefficients ),( mlaE
 and ),( mlaM

 in expansions (12) and 

(13) should take the following form:  

, n 0 n( , ) 4 curl [ ( ) ( )]
dE d l d lm da l m p k k g k r Ω   

r
n X  , (22) 

2

, n 0 n( , ) 4 i ( ) ( )M d l d lm da l m p k k g k r Ω   n X  , (23) 

and there is the following correlation between functions 

)( n rkfl
 in (12) and (13) and )( n dl rkg  in (22) and (23):  

n n n n( ) ( ) , ( ) ( ) if  l l l d l d df k r j k r g k r h k r r r   , (24) 

n n n n( ) ( ) , ( ) ( ) if  l l l d l d df k r h k r g k r j k r r r   . (25) 

For the convenience of further consideration following 

notations are introduced: 

, n 0 n( , ) 4 curl [ ( ) ( )]
dE d l d lm da l m p k k j k r Ω   

r
n X  , (26) 

, n 0 n( , ) 4 curl [ ( ) ( )]
dE d l d lm da l m p k k h k r Ω   

r
n X  , (27) 

2

, n 0 n( , ) 4 i ( ) ( )M d l d lm da l m p k k j k r Ω   n X  , (28) 

2

, n 0 n( , ) 4 i ( ) ( )M d l d lm da l m p k k h k r Ω   n X  . (29) 

 

IV.I. Homogeneous medium 

To find relations between the coefficients of 

electromagnetic field multipole expansions in two 

spherical coordinate systems with the centers in points О1 

and О2 (see figure 1) consider for the first the case of a 

homogeneous medium with 1=2=3. According to (12), 

in these two systems multipole expansions of point dipole 

electric field should have the following form:  
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For the field is independent on a particular coordinate 

system used for its presentation ( ) ( )E r E r  in every 

point of the space. Multiplying this identity on ( )l m Ω

 X  

and integrating over solid angle Ω  with an account for 

(16) and (19) the following connection between multipole 

coefficient 
Ma  and multipole coefficients 

,M da   and 
,E da   

for the region 
drr ~~   can be established: 

 

 

 .  (32) 

 

 

Analogously, from the identity of magnetic fields 

( ) ( )B r B r  we have  

         

,

1

3 3

,

( , ) ( ) ( , )

( )
( ) ( , )

( 1)

m m

E l l l l E d

l

m

l l M d

a l m R F D a l m

m k D
G D a l m

l l






 








 




 

 

  . (33) 

In (32) and (33)  
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

    
  , (34) 

 

 

 , (35) 

 

 ,  

       (36) 

 

where ( )f y  means ( ) /d f y dy , srDxx /)/(~  , r rs , 

2 1/2[1 ( / ) 2 / ]s D r xD r   . Formulae (32)-(36) have 

been obtained accounting for the following expressions 

for the orts 
re , 


e  and 

e : 

2[(1 / ) 1 ( / ) ] /r rxD r x D r s   e e e  , (37) 

2[ 1 ( / ) (1 / ) ] /rx D r xD r s
    e e e  , (38) 

 ee ~  . (39) 

In accordance with explicit expressions (35) and (36) the 

connection coefficients m

l lF 
 and m

llG 
 look like 

coordinate-dependent ones. However, their independence 

on the “connection sphere” radius r can be easily verified 

by making numerical integrations in (35) and (36). In the 

case of 
drr ~~   function 

3( )lf k r
 in the integrands (35) and 

(36) is the spherical Hankel function of the first kind 
(1)

3( )lh k r
. Function 

3( )lf k r  is the spherical Bessel 

function 
3( )lj k r  in the region 

drr   and spherical Hankel 

function (1)

3( )lh k r  in the region 
drr  . Consider the case 

when dipole is located near О2 center ( 0~ dr ). Then 

3 3( ) ( )l lf k r j k r  at r <D and (1)

3 3( ) ( )l lf k r h k r  at r> D. 

As an example, the results of numerical calculations of 
m

LlF  and m

LlG  are shown in figures 2 and 3 for the set of 

parameters {L,l,m} = {3,4,2}, 3 =3, 0 =500 nm, 

D = 5 nm. As seen from these figures, connection 

coefficients m

l lF 
 and m

llG 
 really do not depend on r, i.e. 

they are the constants. At arbitrary finite dr
~

 the parts of 

the dependencies in the region dd rDrrD ~~   should 

be deleted in these figures. 

IV.II. Semiconductor QD in barrier matrix  

Consider radiation of a point dipole located inside QD 

with dielectric constant 2, the QD being formed in barrier 

matrix with dielectric constant 3. The field, which is 

incident on the inner surface of the QD, reflected inside 

QD field and the field transmitted into barrier matrix 

could be written in the form of (12) and (13) with 

corresponding spherical Bessel or Hankel functions 

depending on the necessity to provide the field finiteness 
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( ) ( )

3 3

1

( )

3
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l
i i

E l lm

l m l
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M l lm

a l m j k r Ω
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k


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
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 
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X
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3 3

1
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0
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l
r r

E l lm

l m l
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k
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
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


 



B r X

X

( ) ( )

3 3

1 0 3

( )

3

i
( ) ( , ) curl[ ( ) ( ) ]

( , ) ( ) ( )

l
r r

E l lm

l m l

r

M l lm

a l m h k r Ω
k

a l m h k r Ω





 


 




 



E r X

X

at 0r   or right asymptotic behavior at r  . In a 

standard way [12], using (16)-(21) two systems of 

algebraic equations for the multipole coefficients could be 

obtained from the continuity conditions for the tangential 

components of the electric and magnetic fields at the QD 

surface. As follows from these equations the relationships 

between the multipole coefficients ( ) ( , )t

Ma l m  and 

( ) ( , )t

Ea l m  of electromagnetic field penetrated into the 

barrier matrix and corresponding coefficients 
, ( , )M da l m  

and 
, ( , )E da l m  of the point dipole electromagnetic field 

incident on the QD inner surface have the following form:  
( )

23 ,( , ) ( ) ( , )t M

M M da l m V l a l m  , (40) 

( )

23 ,( , ) ( ) ( , )t E

E E da l m V l a l m  , (41) 

 (42) 

 (43) 

 

 

The connection between multipole coefficients ( )i

Ma  and 

)(i

Ea  of electromagnetic field outside QD written in 

coordinate system О1 and multipole coefficients )(~ t

Ma  and 

( )t

Ea  of the same field written in coordinate system О2 is 

analogous to the homogeneous medium case: 

( ) ( )

1

( )3

3

( , ) ( ) ( , )

( )
( ) ( , )

( 1)

i m m t

M l l l l M

l

m t

l l E

a l m R F D a l m

m k D
G D a l m

l l 



 






 




 

 


 , (44) 

( ) ( )

1

( )3 3

( , ) ( ) ( , )

( )
( ) ( , )

( 1)

i m m t

E l l l l E

l

m t

l l M

a l m R F D a l m

m k D
G D a l m

l l





 






 




 

 


 . (45) 

 

V. INTERACTION OF RADIATION WITH METAL NP  

 

If spherical metal NP with the center at О1 (see figure 1,b) 

is additionally placed into the above considered system, 

then electromagnetic field radiated by QD point dipole 

scatters at the NP. In previous section the multipole 

coefficients )(i

Ea  and ( )i

Ma  of the field radiated by QD in 

the coordinate system with the center at О1 have already 

been determined. This field can be considered now as 

being incident on the NP:  

 

 ,  (46) 

 

 

 

 

 . (47) 

 

 

Scattered (reflected) field can be expressed by the 

following formulae: 

 

 

 ,  (48) 

 

 

 

 

 . (49) 

 

 

Electric field 
( )

1 ( )t
E r  induced (transmitted) in metal NP is 

the sum of the transverse and longitudinal fields, 

)()()( 11

)(

1 rErErE
LTt  , where the transverse electric 

field can be written as 

 

 (50) 

 

 

 

and longitudinal electric field that arises in metal NP due 

to spatial dispersion (see (10) and (11)), respectively as 




 


1

1 )]()([
1

),()(
l

l

lm

lmLl

L

L

L ΩYrkj
k

mlarE  . (51) 

The magnetic field inside the metal NP can be expressed 

as follows: 

 
Fig. 2. Connection coefficient  as function of r in 

the case of L=3, l=4, m=2, D = 5 nm. In the  

region fL(k3r)  jL(k3r), values  refer to the left 

axis of ordinates. In the  region  fL(k3r)  

hL(k3r), values  refer to the right axis of 

ordinates.   

 
Fig. 3. Connection coefficient  as function of r 

for the same parameters and conditions as in Fig. 2. 
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 . (52) 

From the continuity conditions for the tangential 

components of electric and magnetic fields on the NP 

surface and additional boundary condition in the form of 

turning to zero of the normal component of free carrier’s 

current density on the NP surface [10, 11], the following 

expressions for the coefficients of multipole expansions 

(48)-(51) could be found using (16)-(19):  
( ) ( )

33( , ) ( ) ( , )r M i

M Ma l m V l a l m  , (53) 

( ) ( )

33( , ) ( ) ( , )r E i

E Ea l m V l a l m  , (54) 

( ) ( )

31( , ) ( ) ( , )t M i

M Ma l m V l a l m  , (55) 

( ) ( )

31( , ) ( ) ( , )t E i

E Ea l m V l a l m  , (56) 

( )

31( , ) ( ) ( , )L i

L Ea l m V l a l m  , (57) 

33 3 1 3 1

1 3 1 1

( ) ( ) ( )

( ,0) ( ) ( )

M

l T l

T

l l T M

V l j k R j k R

j k R j k R



 

  


 


, (58) 




1

3 1

33 3 3 1 1 3

1 1
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T

E T
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   

 




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 , (59) 

2

31 3 3 1( ) i ( )M

MV l k R     
, (60) 

31 1 3 1( ) i ( ,0) ( )E T

ELV l k R   , (61) 

 1 3 1

31 2

3 3 0 1 1
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l L E L
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

 
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 , (62) 

1 3 1 1

3 1 3 1
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M l l T
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h k R j k R
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 
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 (63) 

3 1

1

1 1

3 3 1 1 3
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( )[ ( )] ( ( ,0) )
T

T

E L l T l x k R

T

l l x k R

j k R xh x

h k R xj x C B

 

   





  

  

 , (64) 

1 1 3 1 1 1( 1) ( ) ( ) ( ) ( )l L l T l L l LA l l j k R j k R j k R k R j k R    
 , (65) 

1 1 3 1 1 1( 1) ( ) ( ) ( ) ( )l L l T l L l LB l l j k R j k R h k R k R j k R    
, (66) 

3 /[1 ( )]ibC      . (67) 

VI. CONCLUSION 

Thus, in this paper all electromagnetic fields in the 

nonspherical “semiconductor QD + metal NP” structure 

are consistently calculated in the single scattering 

approximation for the case of radiation of a point dipole 

located inside QD. It enables finding the power and the 

rate of radiation as well as the intensity of 

electromagnetic energy absorption and the rate of 

nonradiative losses in the system under consideration. 

Hence the efficiency of radiation depending on the 

distance D between QD and NP, radii  R1  and  R2  and  

other  parameters  as well as its 

change relatively to the case of isolated QD could be 

calculated. After summing the contributions from all QD 

unit cells in line with section II analogous characteristics 

including luminescence efficiency change could be found 

for semiconductor QD as a whole. Using found 

connections between multipole coefficients of the 

electromagnetic  field in two different spherical 

coordinate systems with the centers in QD and metal NP 

the developed theory could be generalized to account for 

multiple scatterings of electromagnetic field between QD 

and NP.  
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