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I.  INTRODUCTION 

The phenomena of heat transfer process enhancement 

in liquids and gases by electrostatic fields are well known 

[1-4]. Initially, some authors considered the information 

on these phenomena and similar ones to be rather 

sensational as it was implied the field action on the 

medium molecular thermal conduction itself. But later it 

emerged that the reason for the observed significant 

enhancement of heat transfer in liquid dielectrics and 

gases under the action of external electric fields are the 

electrohydrodynamic (EHD) phenomena, and, more 

precisely, electric convection [3, 5, 6], which is similar to 

the gravity natural one, but is caused by the electric nature 

forces which are collectively known in literature as 

ponderomotive ones [7]. These forces appear to be rather 

complicated depending on many factors such as if the 

medium as an ideal dielectric or real one with low 

conductivity, if the field is homogeneous or not, etc.    

It is possible the field effect on the molecular thermal 

conductivity, however, it is not so far found 

experimentally. At the same time, the possibility of the 

electric field action on the process of mass transfer at the 

ion-molecular level has been proved experimentally [9] 

and analytically [10] through the investigations of the 

electrostatic field influence on the solubility of distilled 

water in sunflower oil. It has been considered the motion 

of molecules and ions due to diffusion, as well as owing 

to migration under the action of external electric forces of 

dipole nature acting on neutral molecules of water H2O, 

and purely coulomb ones, acting on the ions of hydroxyl 

OH
-
 and hydroxonium H3O

+
, the concentration of which 

in water is rather big and determines its pH-degree. The 

general conclusion is that purely coulomb mechanism of 

 

 

 

 charge transfer through the medium is responsible for the 

electric field effect on the solubility of water in oil. 

Consequently, one should keep this in view when 

searching for the possibilities to control mass transfer in 

general. It is not for nothing that when dielectric liquids 

[12] and gases [13] are cleaned from contaminants they 

are preliminary exposed to electric charging. In the case 

of gases this is usually achieved at the treatment of the 

dispersed medium within the corona charge field [13, 14]. 

It has been found that the corona discharge regularities 

also occur in dielectric (low conducting) liquids in the 

presence of highly nonhomogeneous fields. Therefore the 

methods of electric charging of particles in the corona 

discharge field are also used successfully in the case of 

electric cleaning (EC) of liquid dielectrics [15, 16].   

The investigations of EC showed that its efficiency 

decreases with the reduction of the disperse particle 

dimensions and at present such liquid media, the 

dispersion degree of which is more than deciles of a 

micron, are exposed to EC. However, the onrush of 

nanotechnologies makes one give thought to the problems 

to control the motion of nanoparticles by external actions 

including the effects of electric fields. The authors of this 

article, referring to the EC sphere, decided to analyze the 

main regularities of mass transfer at EC at viewing angle 

of the application of the proven methods to the submicron 

level, including nano level. The above mentioned facts 

concerning the influence of the degree of dispersion on 

the EC effect show that no one can expect a high 

efficiency of the field action on the processes of our 

interest. Nevertheless, we think that it is early to exclude 

the existence of new approaches which can favor some 

positive improvements. In particular, the case in hand is 

the problem hydrodynamic aspects.   
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II. THE FORCES ACTING ON A PARTICLE IN THE 

EXTERNAL ELECTROSTATIC FIELD  

In practice the most frequent is the case of the action 

on a particle of the force with purely coulomb nature  
 

          
1 qF E ,                                 (1)   

 

where  q is the particle charge; E is the vector of the 

electric field strength in the particle location point.   The 

difficulties in the case of formula (1) application are 

mainly connected with determination of the particle 

electric charge q, which is known to increase with the 

growth of the particle dimensions. 

If the particle is electrically neutral, it is also subjected to 

the action of the external electric field due to its polarity, 

the applied force being initially potential one [17]:   
  

                 
2 ( ) F P E ,                        (2) 

 

where Р is the electric dipole moment of the particle. 

From expression (2) it follows that the force appears only 

in the nonhomogeneous electric field, as  Р ~Е=>Р∙Е~Е
2
. 

Finally, there exists a class of media, for example, 

colloids, the particles of which have a double electric 

layer and, so called “th potential”  [18],  consequently, 

some charge  с1. The force, which acts on the particle in 

such a case, is as following: 
 

                   1c  
3

F E ,                           (3) 

 

where с1  is the proportionality constant. 

 

The mass flows are determined by these three forces 

which can be also applied to the particle simultaneously. 

Assuming in (1) and (3) the coefficient at E constant, note 

that all the forces are potential ones with the meaning of 

the potential energy W, which all three cases are given by 

the following formulas:  

                1W q   ;                               (4) 

                2W   P E ;                            (5) 

                3W c   .                             (6) 

In formula (4) the particle charge does not depend on the 

coordinates. The same refers to the coefficient at   in 

(6). Here  means the electric potential through which the 

strength Е =  .  

Proceed to the discussion of mass flows beginning with 

their density.  

III. THE MASS FLOW DENSITY 

This physical quantity is a vector and it is given by a 

well-known formula [19]: 
 

                D c b c     i F ,                 (7) 

 

where c is the mass concentration of particles;   is the 

medium density; D is the diffusion coefficient; b is the 

particle mobility coefficient by the force F , in contrast to 

Ek  by the field strength (see below). The force F is 

given by one of expressions (1)-(3) or through the 

potential energy according to the general formula: 
 

W F     (8) 
 

by expressions (4) and (5). 

The mobility coefficient can be calculated by the Stokes 

formula [19]  

1

6
b

r
 ,    (9) 

where r  is the radius of the particles assumed spherical;

  is the medium dynamic viscosity coefficient. 

Please note that the mass flow given by formula (7) is 

through one with no allowance for the convective 

constituent which will appear below when the convective 

diffusion equation is generated.   

The first summand in (70 is a diffusion one. In this case 

the diffusion coefficient can be calculated by the Einstein 

relation [19] 
 

D bkT  , 
 

which in terms of (9) gives: 
 

6

kT
D

r
     (10) 

 

where k is the Boltzmann constant; Т is the absolute 

temperature of the medium. The second summand in (7) 

is the flow density of the particles, caused by their motion 

under the action of external electrostatic forces (1)-(3). As 

is seen from (7) and (9) the radius of the particles 

decreasing, the flow of them must grow, but on the hand, 

when the radius increases all the coefficients at E in the 

formulas for forces (1)-(3) also rise and possibly quicker 

than in the first degree, therefore, as a result the mass 

flow decreases with the growth of the particle dimensions, 

being practically observed.   

Please note that the flow on the right side of (2) may have 

opposite directions but may also coincide depending on 

the direction of the second flow called a migration one. 

The second case may happen in the course of injection of 

one substance into another, for example, medically.   

In the context of the mass transfer processes at the 

submicron level it is pertinent to note how the particle 

dimensions influence the transfer under the action of 

electric fields.  

It follows from equation (7), formulas (9) and (10) that 

the decrease of the particle radius r results, in inverse 

proportion, in the growth of the mass flow I, as  Db1/r, 

and it is real with respect to the mass concentration c. 

However, if we pass from this concentration c to partial 

one n, i.e. to the number of particles per volume unit, 

than, for the mass concentration determined by the 

following formula:  
 

3

0 0 01 4

3

V nm r
c n

  

  

 
     , 
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where 
1m is the mass of all the particles per volume unit ; 

0  is the particle substance density; 
0V  is the volume of 

the particles, we can make a conclusion that the density of 

the mass flow of the particles grows as the square of their 

radius. These notes equally refer to the both flows in right 

side of (7). However, there exist some specific features of 

the migration (“electric”) flow mainly imposed by the 

electric charge q in the formula for force (1) to which we 

now restrict ourselves.  

There are formulas to determine this charge, see, for 

example, [13]. All of them results in the growth of the 

particle charge when the radius increases. We suggest 

somehow another approach to derive a formula for the 

particle charge based on the principle of the system 

potential energy minimum, which is rather transparent 

and makes possible further generalizations.  

Let initially neutral spherical low conducting particle with 

radius R is surrounded by N0  ions with radius r0, charge q0 

and N ions pass to the particle. Then the total energy of 

the system is as follows:  
2 2 2

0 0
0

0 0 0

( )
8 8

q q N
U N N

r R   


     

 

Putting to zero the N-derivative of this function, we 

obtain the following formula for the particle charge: 
 

0 0( / )Q N q R d q    , 

 

where 02d r  is the ion diameter. The simplicity of this 

formula apparently shows that it may be used with the 

aim of estimations but not rigorous calculations. 

Assuming (for the nanoparticles)  R  10
-8

 м, r  10
-10

 м, 

we obtain  Q  10
2

0q  – a realistic value. 

Subsequently we consider the stationary states (

0t   ), among which the Boltzmann equilibrium 

one.  
3.1. Boltzmann distribution. This distribution is 

obtained at I = 0 which means the dynamic equilibrium 

between the diffusion flow (the first summand in (7) and 

migration one at the expense of electrostatic forces (the 

second summand in (7)). Besides, it is implied  = const, 

b =const, with the meaning of independence on the 

coordinates. Equating the right side of (7) to zero, we 

obtain the following homogeneous equation: 

 

0D c b c    F , 

 

the solution of which in terms of (8) is as follows: 

 

          0

/( )W Tkc c e 
  .                   (11) 

 

For the particular case of equilibrium in the field of 

gravity forces with the potential energy of the particles 

W = 0m g z  , where 0m  is a single particle mass we 

obtain a well-known distribution 

                         0
0

( ) /( )m g z k T
c c e

   
  . 

Similarly, substituting into (11) the expressions for 

potential energies (4)-(6), we receive the corresponding 

electric distributions for the cases of electric forces, 

respectively: 

              0

( ) /( )q k Tc c e   
  ,             (12) 

supposing 
0 = 0 corresponds to the concentration 

0c . 

Thus, positively charged particles will accumulate near 

the grounded electrode, where 
0  = 0, and negatively 

charged ones will gather far from it.   

For the case of ideal particles we have from (5) 
 

                
( ) / )(

0
k Tec c    P E

,                 (13) 

 

And, as the vector of the dipole moment P is nearly 

always parallel to the vector of the electric field strength 

E, it follows from distribution (13) that dielectric particles 

(at q =0) should gather into the region of high field 

strengths. The case of force (6) is similar to (4) and the 

distribution has the following form: 

1
0

( ) /( )c k T
c c e

   
  . 

3.2. Generalization of the Boltzmann distribution 

in the case i = const, F = const. Here there happens the 

preponderance of one of the flows in the right side of (7) 

over another. Namely, if the resulting flow i is directed 

against the particle concentration gradient, than the 

diffusion process predominates, and vice versa. 

The concentration distribution in this case is found 

from nonhomogeneous equation (7) as the sum of the 

general solution (11) of the homogeneous equation, 

discovered above, and a particular solution of the 

nonhomogeneous one which with an accuracy to the 

constant multiplier is i . Thus,   
 

exp[ /( )] /( )W k Tc c b     i F ,       (14) 

 

where the division of two vectors in (14) is admissible as 

they are supposed collinear. Besides,  c
 is a new 

arbitrary constant and is found from the following 

condition:  
 

00
/( )

W
c c b c


  i F . 

 

Hence 

0 (1 )

W W

T Tk ke e
b

c c


 

     
i

F
.       (15) 

At i = 0 from (15) there follows particular case (11) – 

the Boltzmann distribution. Within the region of small 

potential energies (W = 0) the distribution is close to the 

initial one– с0. At large ones (W → ∞)  

the distribution of concentrations becomes such without 

regard for diffusion and F = const. Usually this 

corresponds to the far regions of the processes. For 
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illustrative purposes we apply formula (15) to the field of 

gravitation: 

  
0

0 0

(1 )T T

m g z m g z

k ke e
b

c c


 

     
i

F
.   (16) 

This distribution corresponds to the continuous fall of 

particles from high altitudes under the gravity forces 

keeping below (at z=0) a constant concentration с0=сопst 

and constant flow of particles at the high altitudes z. 

Similar physical situations may be observed in electric 

fields. The constant multiplier at brackets (15) we denote 

с∞ (in the meaning of W → ∞). Then instead of formula 

(15) one can write: 
 

      
0 (1 )

W W

T Tk ke ec c c
 

 
     ,              (17) 

 

where с∞ is given by the following formula: 
 

                   ( ),bc   Fi                              (18) 

 

In this case it is implied that i  F. 

All the distributions obtained above are stationary ones, 

i.e. independent of time. Boltzmann distribution (11) is an 

equilibrium one from the viewpoint of the dynamic 

balance between the diffusion and migration processes. 

Generally, the mass transfer processes are covered by the 

convective diffusion equations, which, along with the 

diffusion equation itself, include the equations of 

hydrodynamics and in our case those of 

electrohydrodynamics.   

IV. EQUATIONS OF DIFFUSION 

The main equation of convective diffusion has the 

following form [19]: 
 

    
t

c
c

 
    

 
v i ,                    (19) 

 

where v is the hydrodynamic velocity, and the mass flow 

density is given by formula (7).  For incompressible 

medium (19) can be rewritten in the form:  
 

 [ )](
t

c
D c c b  


  


  F v .       (20) 

 

It is seen that the account for the liquid motion amounts to 

the addition to the through velocity 
 

u ≡ b∙F 

 

of the hydrodynamic velocity v.  

Denoting the total velocity 
 

 w u v  
 

and assuming velocity u constant from (20) we obtain: 

2

t
D

c
c c


 


 w . 

 

Under the conditions of electric convection, and in the 

case of corona discharge – of electric wind (EW) the 

hydrodynamic velocity v has a one-dimensional  jet 

character and its value is as follows [20]: 
 

             

1 0,5
3

2 2

E

jd
c

d k








 
   

 
            (21) 

 

where ν = η/γ is the kinematic viscosity; 
Ek is the 

mobility of the ions of the corona electrode sign ; d is the 

characteristic size of the corona electrode; 
2c  is the 

coefficient of proportionality, 
2c ~1. The exponent 

decreases from 1 to 0,5 as EW develops from laminar 

flow to turbulent one.    

If the case is of EC usually the working space of an 

electrofilter (EF) consists of two zones: emitter one where 

the particles are imposed to charging and the liquid is put 

into electroconvective mixing collecting zone with the 

arranged traps of dispersed particles. In the course of the 

EF operation the concentrations in both regions are nearly 

constant, when the process begins they are the same, 

nearly equal to the initial ne с0,  then in the first the 

concentration decreases, and in the collecting one it 

increases. The transition between the zone is in the form 

of a narrow boundary mass transfer layer with some 

thickness . On one side of the layer the concentration is 

assumed equal to the average value across the emitter 

zone volume – c , from where the cleaned liquid is 

filtered out. On the other side it is assumed equal to the 

average value in the collecting part. It is shown in works 

[20, 21] that integration over the emitter volume, i.e. 

averaging  it is possible to obtain approximately a linear 

equation in the following simplest form: 

 

                      
d c

A c B
dt

   .                         (22) 

 

The expression for the coefficients A and B contain all 

possible physical parameters of the process, and 

depending on the relation between them one can get a 

large number of particular cases of the solution of 

equation (22) [21]. 

Thus, it has reviewed the simplest analytical 

approaches to the solution of the problems of separation 

of heterogeneous media with the help of electric fields 

from the viewpoint of application of these approaches to 

the questions emerging in practice and theory of the 

transfer of submicron particles in heterogeneous media. 

 

REFERENCES 

[1].   Sentfleben H.Z., Phys., 32. 550. 1931.  

[2] Alad’ev I.T., Efimov V.A., “Enhancement of Heat 

Transfer in Electric Fields”, Inzh. Fiz. J., vol. 6, no. 

8,  pp. 125-132. 1963. 

[3]  Lazarenco B.R., Grosu F.P., Bologa M.K.,  

“Convective Heat Transfer Enhancement by Electric 

Field”, Int. J. Heat. Mass Transfer, Pergamon Press, 

vol. 18, pp.1433-1441, 1975. 



2nd International Conference on Nanotechnologies  and Biomedical Engineering, Chisinau, Republic of Moldova, April 18-20, 2013 
 

         317 

[4] Bologa M.K., Grosu F.P., Kozhukhar’ I.A., 

Electroconvection and Heat Transfer, Kishinev: 

Shtiintsa, 1977, 320 p.  

[5]  Ostroumov G.A., “Electric Convection (Review)”, 

Inzh. Fiz. J., 1966, vol. 10, no. 5, pp. 683. 

[6] Ostroumov G.A., Interaction between Electric and 

hydrodynamic fields, Moscow: Nauka, 1979. 

[7] Landau L.D., Lifshits E.M., Electrodynamics of 

Continuous Media, Moscow: Fizmatgiz, 1957.  

[8] Buevich Yu.A., Butkov V.V., “On Fluctuation 

Mechanism of Transition in Electric Field”, Inzh. Fiz. 

J.,1983, no. 3, pp. 398-405.  

[9].  Bologa M.K., Grosu F.P., Kozhukhar’ I.A., 

Polikarpov A.A., Kozhevnikov I.V., “Influence of 

Electrostatic Field on the Solubility of Dielectric 

Liquids and Gases”, Elektron. Obrab. Mater., 2005, 

no. 5, pp. 53-57. 

[10] Grosu F.P., Bologa M.K., Kozhuhar’ I.A., 

“Theoretical Aspects of the Electric Field Effect on 

Solubility”, Elektron. Obrab. Mater., 2004, no. 1, pp. 

42-45. 

[11] Gerasimov Ya.I. et al, Physical Chemistry, vol. 2, 

Moscow, 1973.  

[12] Shmidt A.A., Theoretical Principles of Vegetable Oil 

Rafination, Moscow, 1959. 

[13] Vereshchagin I.P., Levitov V.I., Mirzabekyan G.Z., 

Pashin M., Principles of Electrodynamics of 

Dispersed Systems, Moscow: Energiya, 1974.  

[14] Rubashov I.B., Bortnikov Yu.S., 

Electrogasdynamics, Moscow: Gostekhizdat, 1971. 

[15] Bologa M.K., Kozhukhar’ I.A., Grosu F.P., Leu V.I., 

“Investigation of Cleaning of Dielectric Liquids from 

Mechanical Impurity in Stationary Electric Field”, 

Elektron. Obrab. Mater., 2001, no. 5, pp. 34-39.  

[16] Leu V.I., “Electric Cleaning of Transformer Oil from 

Mechanical Impurity in Stationary Electric Field”, 

Elektron. Obrab. Mater., 2002, no. 5, pp. 55-59. 

[17] Tamm I.E., Theoretical Principles of Electricity, 

Moscow: Nauka, 1966.  

[18] Luk’yanov A.B., Physical and Colloid Chemistry, 

Moscow: Khimiya, 1980.  

[19] Landau L.D., Lifshits E.M., Hydrodynamics, 

Moscow: Fizmatgiz, 1988. 

[20] Grosu F.P., Bologa M.K., Leu V.I., Bologa Al.M., 

“Mass Transfer Time Dependence in the Case of 

Electroseparation”, Elektron. Obrab. Mater., 2012, 

no. 3, pp. 72-82. 

[21] Grosu F.P., Bologa M.K., Bologa Al.M., 

“Theoretical Prerequisites to Calculation of 

Electroconvective Heat Mass Transfer”, Elektron. 

Obrab. Mater., 2013, vol. 49, no. 1, pp. 20-29.  

  


