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I. INTRODUCTION 

Quantum mechanics  was elaborated since the late 

1920s, and it can be safely said that without it our modern 
technological society would not exist.  Quantum effects 

power almost all that we know, from transistors and lasers 

to medical imaging nuclear weapons and more.  However, 

only in the last 10-15 years has it been realized that the 

most fundamental attributes of quantum mechanics - ones 

not presently used in any technology - can be configured  

for quantum computing and communication. Formally, a 

quantum computation is performed through a set of 

transformations, called gates [1]. Like quantum operators a 

gate applies unitary transformation U to a set of qubits in a 

quantum state | . At the end of the calculation, a 

measurement is performed on the qubits (which are in the 

state | = U |). There are many ways to choose sets of 

universal quantum gates. These are sets of gates from 
which any computation can be constructed, or at least 

approximated as precisely as desired. Such a set allows one 

to perform any arbitrary calculation without inventing a 

new gate each time. The implementation of a set of 

universal gates is therefore of crucial importance. It can be 

shown that it is possible to construct such a set with gates 

that act only on one or two qubits at a time. Ordinary 

quantum computation uses simple quantum two level 

systems (e.g. electron or nuclear spins, atomic hyperfine 

states, etc.) as quantum bits (’qubits’) with one- and two-

qubit unitary operations serving as universal quantum 

gates. 
The great promise of quantum computers has to be 

balanced against the great difficulty of actually building 

them. Foremost among the difficulties is the fundamental 

challenge of defeating decoherence and errors. Small 

improvements to current strategies are not sufficient to 

overcome this problem; radically new ideas are required. 

Ordinary quantum computation uses simple quantum two 

level systems (e.g. electron or nuclear spins, atomic 

hyperfine states, etc.) as quantum bits (’qubits’) with one- 

and two-qubit unitary operations serving as universal 

quantum gates. The main problem is quantum decoherence, 

the inevitable continuous dephasing of a quantum state due 

to its interaction with the environment. A new paradigm is 
to build a quantum computer which is topologically 

immune to quantum decoherence and such platform is 

called topological quantum computation (TQC)[1]. The 

idea is to use the topological quantum numbers of small 

groups of anyons as qubits and to perform operations on 

these qubits by exchanging the anyons, both within the 

groups that form the qubits and, for multi-qubit gates, 

between groups. Anyons are unusual special type 

quasiparticles unlike the electrons and protons and having 

the desired mathematical properties. The importance of 

such a paradigm is that it allows one to make direct contact 

with the circuit model of quantum computation and it 
enables algorithmic questions to be tackled independently 

of the details of experimental implementation, at least 

initially. TQC employs many-body physical systems with 

the unique property of encoding and processing quantum 

information in a naturally fault-tolerant way. Research on 

topological quantum computation has become a highly 

interdisciplinary field, with frontiers in physics, 

mathematics, and computer science. Moreover, advances in 

the theoretical understanding of abstract topology, in 

physical realizations of topological matter, and in 

computational paradigms have been closely interrelated 
[2], with developments in one area strongly influencing the 

others. Recent years have witnessed significant theoretical 

and experimental developments. These include major 

experimental and theoretical advances in fractional 

quantum Hall systems that support the existence of non-

Abelian anyons—the building block of topological 

quantum computation—as well as the predication and 

experimental discovery of novel spin–orbit systems such as 

topological insulators. 
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The aim of the paper is to review together the 

latest developments in a TQC and topological materials 

with the goal of underlining the synergy between computer 

and material sciences approaches.  

II. MATHEMATICAL CONSIDERATIONS ON 

TOPOLOGICAL COMPUTATION  

Knots, links and braids are the mathematical basis 

of TQC. A representation of a knot was defined to be a 

closed polygonal curve in space. Links are then a 

combination of knots that are intertwined. It was not until 

later (1920s) that mathematicians became interested in 

representations of braids which were defined to be a set of 

n polygonal curves stretching from z= 0 plane (in R3) to 

the z = 1 plane where the kth curve stretches from (1/2, k/n, 

0) to (1/2,k/n, 1) and the z value is strictly increasing and 

the curves do not intersect [3]. Braids clearly have some 
algebraic properties. There is a clear identity braid, which 

is just formed by connecting the start and end points with 

straight lines. We can imagine“adding” two braids with the 

same number of strands. This addition will be associative” 

a(bc) = (ab)c. Similarly, we could imagine by exactly 

reversing the way we did the braiding, that we could add 

two braids which could be manipulated to obtain the 

identity (an inverse braid). Finally, if we add many braids 

together it is clear it will still remain a braid. Thus a group - 

Artin braid group -  is obtained for which we can establish 

about how it may be generated and what equalities are 
required for combinations of those generators so that we 

can determine if two braids are equivalent [3]. Let to define 

k as the exchange of the kth curve with (k+1)st curve where 

the kth curve passes over the (k+1)st (Fig 1). It is easy to 

observe the following set of identities: 

i j = j  i  for |i – j|< 3; i i+1i = i+1 i i+1

The first of equations indicates that two disjoint exchanges 

are commutative and the second can be seen in Fig.1. 

 
Fig.1. Two braids continuously deformed into each 

other without cutting any of the strands illustrating the 

second equality. 

The abovementioned conditions are all which are required 

to define general braid group. 

In TQC vector spaces corresponding to associated 

strings of particle interactions are interrelated by 

recoupling transformations that generalize the usual QC 

mapping. A full representation of the Artin braid group on 
each space is defined in terms of the local interchange 

phase gates and the recoupling transformations [1]. These 

gates and transformations have to satisfy a number of 

identities in order to produce a well-defined representation 

of the braid group. These identities were discovered 

originally in relation to topological quantum field theory. 

At first sight, a TQC does not seem much like a 

computer at all. It works its calculations on braided 

strings—but not physical strings in the conventional sense. 

Rather, they are what physicists refer to as world lines, 

representations of particles as they move through time and 

space. However TQC are based on non-Abelian statistics 

and a special type of  particles –anions - are required, 

which can appear in   physical systems as the result of  
many-body interactions. 

III. TOPOLOGICAL COMPUTATION WITH 

ANIONS  

In conventional computing zeroes and ones are 

created by switching an electric current on and off in a 

MOS transistor. Ordinary quantum computation uses 

simple quantum two level systems (e.g. electron or nuclear 

spins, atomic hyperfine states, etc.) as quantum bits 

(’qubits’) with one- and two-qubit unitary operations 
serving as universal quantum gates. Physical basis of TQC 

is more subtle and use the anions - excitations in a two-

dimensional electronic system that behave a lot like the 

particles and antiparticles of high-energy physics. They are 

able to carry charges that are fractions of the fundamental 

charge of the electron. The spin of these quasiparticles can 

take on any real value. This is of course related to their 

statistics and the fact that they are neither fermions nor 

bosons. There are no physical processes that can create or 

destroy isolated anyons. This is important if we intend to 

use them in a quantum computer. If the anyons could 
spontaneously appear or disappear any quantum operation 

using them would fail. They also have antiparticles, which 

they can interact with to combine or annihilate. Anyons can 

also combine with other anyons that are not their 

antiparticle. Fundamental attribute of the a group of anyons 

is its quantum toplogical number.    

 
Fig.2. Groups of particles have quantum numbers 

By braiding two anyons, they acquire up a 

topological phase similar to that found in the Aharonov-

Bohm effect – that is the phase given to a charged particle 
accumulates when it travels around a solenoid. Just like the 

phase obtained in Aharonov-Bohm effect, the phase only 

depends on how many times the anyons wrap around each 

other and not the path they follow. In the one dimensional 

representation of the braid group, we obtain σj = e i θj for 

identical anyons, where θj is the topological phase added 

by the σj operation [2]. 

Alternatively, we could have a multidimensional 

representation, which allow us to have nonabelian anyons 

as well. These nonabelian anyons are more useful for 

quantum computing than abelian anyons. We now must 

consider how anyons can combine and split. Each model of 
anyons will have different fusion rules. The fusion rules 

determine the total charge, c, when a and b combine. These 

are written as a x b = ΣcNcab. where Nc ab is a 

nonnegative integer and the sum is over the complete set of 

labels of the composite. The composition rules are 

symmetric (a x b = b x a) so the possible charges do not 

depend on which side the anyon  came from. Note that if 
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Ncab is zero the charge, c, cannot be formed, while if it is 

one there is a unique way of obtaining c, and Ncab can also 

be greater than one. So Ncab represents the number of 

distinguishable ways that a charge c can be obtained. The 

distinguishable ways that  a and b can be combined to form 

c then represents an orthonormal basis for a Hilbert space, 

which is  called a fusion space. 

The next idea that is introduced is the R matrix, 
which is the braid operator, and the F matrix, which is the 

fusion operator. These are each specific to a given model. 

The last result of the formalism of anyons that should be 

noted is that the Hilbert space can be shown to be 

exponential in size making it a good space to do quantum 

computations.  

Following step is to use the topological quantum 

numbers of small groups of anyons as qubits and to 

perform operations on these qubits exchanging the anyons, 

both within the groups that form the qubits and, for multi-

qubit gates, between groups. Summary of TQC basis 

includes: 
• Uses 2D systems which have quasiparticles with 

NonAbelian Statistics. 

• Quantum Information is encoded in nonlocal topological 

degrees of freedom that do not couple to any local quantity. 

• States can be manipulated by dragging (braiding) 

quasiparticles around each other. 

• The operations (gates) performed on the qubits depends 

only on the topology of the braids. 

IV. TOPOLOGICAL STATE OF CONDENSED MATER 

Depending on the electronic band structure and 

transport characteristics uncountable number of materials 

and substances can be classified quite simply in terms of 

their conductive behavior into one of three types —

 insulators, semiconductors and metals. More than three 

decade ago there was established that spin-orbit interaction 

(SOI) has an important pattern on band structure of solid 

state matter. Among different qualitative features induced 

by SOI the band inversion of electronic spectrum near the 

Fermi level has been discovered. Such type of electronic 
spectrum was identified in different type of semimetalic 

and narrow-gap semiconductors Bi1-xSbx, Pb1-xSnxTe, 

Bi2Te3, HgTe, TlBiTe2 etc. In the context of low 

dimensional structure investigations the band spectrum 

inversion was shown to generate new type of interface 

gapless states with linear spectrum at the heterocontact 

boundaries. Last years investigations [4] have reopened the 

interest to materials with inverted band spectra. Due to new 

type of the symmetry break like that characteristic for the 

integer and fractional quantum Hall effects the electronic 

states was shown to have topological nature and materials 
have been named toplogical insulators (TI). Thus in TI a 

new state of matter appear, distinguished from a regular 

band insulator by a nontrivial time-reversal topological 

invariant, which characterizes its band structure, and non-

trivial interplay of charge and spin degree of freedom of 

band electrons. In results new physics and phenomena 

related to this states have greatly emerged. Several of such 

new TI properties are reviewed in the paper as well as 

some old observed properties of materials with band 

inversion. Many intriguing properties of TI can be ascribed 

to the existence of two-band gaplees  Dirac electrons  in its 

low-energy band structure. Actually, Dirac electrons with 

finit gap  in materials have a long history starting from 

bismuth that has three-dimensional massive Dirac electrons 

in its band structure 

The most robust observable consequence of a 

nontrivial topological character of these materials is the 

presence of gapless helical edge states (interface states of 

inverted heterocontacts), whose gapless states is protected 
by time-reversal symmetry and is thus robust to 

perturbations that do not break this symmetry (Fig.3). Like 

the Hall state the “bulk” of the electron gas of TI is an 

insulator, but along its suface, the states can be gapless. 

Within a certain parameter range the surface states of TI 

are well described by a Dirac cone, allowing for parallels 

with graphene and relativistic physics, and prohibiting 

backscattering. A prerequisite for such experiments is a 

highly tunable surface state which is decoupled from the 

residual bulk carriers. Despite considerable recent evidence 

of TI surface states in ARPES and STM, transport 

experiments are complicated due to significant parallel 
conduction through bulk states, limited surface density 

tunability, and uncertainty 

 
Fig.3. The electronic band structures of topological 

insulators, a new class of quantum matter with (a) a robust 

metallic state at the surface/edge and insulating properties 

in the bulk/surface, and (b) a conductive state at the 

surface or edge with zero gap and the same linear energy 

dispersion as graphene. 

 

of the surface to bulk coupling.  The unusual planar metal 
that forms at the surface of topological insulators inherits 

topological properties from the bulk bandstructure. The 

manifestation of this bulk-surface connection occurs at a 

smooth surface where momentum along the surface 

remains well-defined: in its simplest possible form, each 

momentum along the surface has only a single spin state at 

the Fermi level, and the spin direction rotates as the 

momentum moves around the Fermi surface ensuring a 

non-trivial Berry’s phase. These two defining properties of 

topological insulators namely spin-momentum locking of 

surface states and π Berry’s phase along with the 
consequences such as the robustness to non-magnetic 

disorder could be most clearly demonstrated with the 

discovery of the second generation of topological 

insulators. At the same time the spectrum and 

characteristics of topological surface states (TSS) 

depending on geometrical configuration  can be 

manipulates by different factors: electrical and magnetic 

fields, strain and deformation ets. For this reason TI are 

being explored with a view towards applications, as a 

potential platform for TQC [4]. 
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V. MAJORANA FERMIONS OF TI AS ANIONS FOR 

TOPOLOGICAL COMPUTATION 

In condensed matter physics, Majorana fermions 

can arise due to a paired condensate that allows a pair of 

fermionic quasiparticles to “disappear" into the condensate. 
They have been predicted in a number of physical systems. 

At the edge of a  superconductor [2] there may or may not 

be discrete states within the energy gap that are bound to 

the boundary. Such a quasiparticle is its own antiparticle 

and they are defined as Majorana fermion. It is essentially 

half of an ordinary Dirac fermion. Due to the particle-hole 

redundancy, a single fermionic state is associated with each 

pair of  E energy levels. The presence or absence of a 

fermion in this state dfines a two level system with energy 

splitting E. Majorana zero modes must always come in 

pairs (for instance, a 1D superconductor has two ends), and 

a well separated pair defines a degenerate two level system, 
whose quantum state is stored nonlocally. Majorana bound 

states defines a degenerate two level system -  a qubit. 

Importantly, the quantum information in the qubit is stored 

non locally. The state can not be measured with a local 

measurement on one of the bound states. This is crucial, 

because the main dfficulty with making a quantum 

computer is preventing the system from accidentally 

measuring itself. 2N Majorana bound states defines N 

qubits - a quantum memory. 

In two dimensions a number of chiral Majorana 

edge modes can appear, which resemble chiral modes in 
the quantum Hall effect, but for the particle-hole 

redundancy. A spinless superconductor with px +ipy 

symmetry is the simplest model 2D topological 

superconductor. Such superconductors will also exhibit 

Majorana bound states at the core of vortices. 

Combining topological insulators with ordinary 

superconductors leads to an exquisitely correlated interface 

state that, like a topological superconductor, is predicted 

to host Majorana fermion excitations and its properties has 

proposed to be for fault tolerant quantum information 

processing [4].  

Majorana fermion can be created in several ways 
using topological insulators [4]. The most direct proposal 

using a 3D topological insulator is to consider the 

proximity effect from an ordinary s-wave superconductor. 

A magnetic vortex core in such a system will carry a zero-

energy Majorana fermion state localized near the vortex in 

the interface layer, as well as possibly ordinary electronic 

modes (Fig.5).  

 
Fig. 4. Majorana bound stats in topological 

isolator/superconductor heterojunction and its braiding. 

There are analogous ways to create a Majorana 

fermion using strong spin-orbit quantum wells rather than 

topological insulators. 

Recently, a network of 1D semiconductor 

quantum wires has been proposed [5] as a suitable platform 

to create, transport, and fuse Majorana fermions at the wire 

ends. The wire network consists of wire segments in the TS 

state (shown in red with numbers in Fig. 5) connected by 

segments in the non-topological superconducting (NTS) 

state (shown in blue without numbers in Fig. 5).  

 
Fig. 5. Schematic of entanglement generation and 

manipulation in quantum wire topological qubits using 

superconductor Josephson junctions. 

Local gates allow Majorana fermions to be 
transported, created, and fused as outlined in Fig. 5. As one 

germinates pairs of Majorana fermions, the ground state 

degeneracy increases as does our capacity to topologically 

store quantum information in the wire. Specifically, 2n 

Majoranas generate n ordinary zero-energy fermions whose 

occupation numbers specify topological qubit states. 

Adiabatically braiding the Majorana fermions would enable 

manipulation of the qubits, but is not possible in a single 

wire [5]. The Majorana fermion states are transported by 

shifting the end points of the TS segments by applying 

locally tunable external gate potentials (which control μ). 

VI. CONCLUSIONS 

There is a great deal of progress that has been 

made in the theory of topological quantum computing. 

Anyons and its braids in the topological matter such as 

fractional quantum Hall systems and novel discovered 

topological insulators  excellent simulate quantum gates to 

arbitrary accuracy. Combining topological insulators with 

ordinary superconductors leads to an exquisitely correlated 
interface state that, like a topological superconductor, is 

predicted to host Majorana fermion excitations and its 

properties has proposed to be for fault tolerant quantum 

information processing. 

A network of topological insulator quantum wires 

in the vicinity of an s-wave superconductor allows 

universal TQC. Such approach enable the Majorana fusion 

rules to be probed, along with networks that allow for 

efficient exchange of arbitrary numbers of Majorana 

fermions. 
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