
7th International Conference on Microelectronics and Computer Science, Chişinău, Republic of Moldova, September 22-24, 2011

 221

1. INTRODUCTION

1.1 The formulation of the problem

Code analysis is a very important issue nowadays.

In late 80s people only tended to try to make their software

qualitative. Nowadays it is a must for a professional

software developer and is one of those critical criteria

which separate the best from the rest. Code quality is a

scientifically studied question with a big enterprise

background today bringing such massive systems as

NDepend or FxCop to the community table. These giants

are really difficult to fight against because of their

achievements but their products have their slight

shortcomings too. These disadvantages can be their

nonlinear curve of mastering them, their language which is

far from being ubiquitous [1], the high price in the case on

NDepend. There is also one more peculiarity which walks

along the above mentioned: quality is a perceptual,

conditional and somewhat subjective attribute and may be

understood differently by different people. Anyhow we

insist that there are some commonly recognized criteria for

detecting bad code but that does not mean that one cannot

think of his own ones. The described system tackles all

these issues.

1.2 The formulation of the requirements

To solve the code criteria problem a very flexible

approach was chosen – there is a possibility to load/unload

assemblies describing the search of bad code into the

system with the possibility to enable/disable and also set-up

each search method. Of course the classes in these

assemblies should correspond to certain rules – these rules

are written in the interfaces which the search classes must

implement (interfaces are currently the best choice and

such inventions as dependency injection (DI) and inversion

of control (IOC) [2] are there to support their firm

positions).

A sample library was written to serve two

purposes. It is both a good way to show the idea of how to

implement the necessary interfaces and a proof that there

are some general criteria which cannot be debated and

which are well–recognized in the field. This assembly

includes 9 search methods described by Martin Fowler and

Kent Beck [3] with parallel hierarchies and greedy methods

being one of the most interesting among them. Basically

this library searches for what they call “bad smell” code.

This term was chosen by Fowler and Beck while being on a

trip to Europe. One night they were thinking of a proper

name for such code: if something looks bad, you can close

your eyes and not see it anymore, if something sounds

ugly, you can close your ears but sooner or later you will

have to use this code again and the new part of its smell

will remind you of its quality. It is fair to mention that bad

code should be refactored and having your system written

in an undesired way may significantly decrease the

possibility to extend it by adding new features and even

lead the project to its death. Refactoring itself is a way to

restructure the code without changing its behavior. Three

steps are necessary to implement a refactoring: find the

portion of bad code, refactor it and test the behavior of the

system in order to make sure it is unchanged. The second

step is really automated with all the variety of refactoring

plug-ins for the majority of modern IDEs including the

community – acclaimed plug-ins by JetBrains. The third

step is also automated with a lot of tools like NUnit and

RhinoMocks and such approaches as TDD and BDD.

 2. IMPLEMENTATION

2.1 Chosen tools

 The add-in was implemented in Visual Studio

2010 and can be distributed and installed through simple

.vsix packages. The interface is built using WPF

technology and is integrated into the IDE as a common tool

window. The add-in was written in Visual Studio 2010 and

tested using its new feature called experimental feature

which completely separates the states of test and

development instances. The info about the current “bad

smell” registries is stored using SQLite database and is

accessed ultra–fast C#-SQLite library. The parsing of the

code is done either via built–in DTE features or using

Roman Ivantsov’s great open-source project called Irony

Implementing a code analysis tool for Visual

Studio 2010

Index Terms — code quality, refactoring, flexibility, MVC pattern.

Yuriy Hohan
1
, Ludmila Luchianova

2

1. Technical University of Moldova, Faculty of Computers, Informatics and Microelectronics, str. Stefan cel

Mare 168, Chisinau MD-2004 Moldova

E-mail: yuriihohan@gmail.com

2. Technical University of Moldova, Faculty of Computers, Informatics and Microelectronics, str. Stefan cel

Mare 168, Chisinau MD-2004 Moldova

E-mail: lluchianova@yahoo.com

mailto:yuriihohan@gmail.com
mailto:lluchianova@yahoo.com

7th International Conference on Microelectronics and Computer Science, Chişinău, Republic of Moldova, September 22-24, 2011

 222

depending on the level of details needed. Visual Studio

built-in modeling tools have been used to build the UML

model.

2.2 Extension and flexibility

 The add-in was written in such a way that it could

correspond to the requirements of extension and flexibility

to the maximum extent possible. This compartment will

describe the way it was achieved in detail.

2.2.1 Adding libraries

One can add any number of libraries to the system

but all the libraries should meet certain criteria.

Criteria 1. They should reference and use the

CommonLibrary shipped with the add-in and containing

all the necessary classes for its functionality.

Criteria 2. Every "bad smell" should have a model, a

view and a controller attached to it. This was implemented

using the MVC pattern.

1. All the controllers should be marked as

[BadSmellClass] and should inherit from

BadSmell class.

2. All the models should inherit from

BadSmellOptions class.

3. All the views should implement IOptionView.

2.2.1.1 BadSmell class

This is the controller part. There are three methods

every class looking for bad code must implement:

1) FindSmell - it searches for all the sequences of bad

code and returns the list of found bad smells. The task

which stands in front of the developer writing this method

is filling the return list with the registries found by his

algorithm. The reference of DTE is passed but one must

not necessarily limit himself to the info from the DTE.

2) GenerateOptions - this method must build its

model from its view. This means it must fill all the option

fields of the model with the information from the view

entered by the user.

3) DefaultOptions - must set model's options to

defaults. Basically this method determines the default

model which is used by the system until the user decides to

change it.

2.2.1.2 BadSmellOptions class

This class represents a lot of template methods

which are used for saving, serializing, etc. the model. For

instance, the model class is stored in the database in binary

serialized way. Anyhow its children must implement just

one method:

public Dictionary<string, object>

GetValues().

 This method must return all the set values

wrapped in the Dictionary collection.

2.2.1.3 IOptionView interface

 This is the view part. There are three methods to

implement in it:

1) Draw - implements the view drawing logic, this method

is responsible for drawing the option controls in the right

place on the parent control.

2) GetValueFromGUI - returns the dictionary of GUI

values but not the model. This is due to an attempt to

completely separate the view and the model. The

separation differs from one implementation of MVC

pattern to another.

3) FillGUI - fills the GUI controls with the values taken

from the abstract model which is passed in the parameters.

2.2.2 Extending help

 One can extend the help just by changing the help

directory in the add-in root folder. This version of add-in

supports just *.txt format for files but the number of

subdirectories is unlimited.

2.2.3 Further flexibility

 The flexibility is achieved not only by vast

extension possibilities but also through the possibility of

setting-up every search method, enabling and disabling it,

recommendations of the possible refactoring method which

can be used, the possibility of viewing the problematic

piece of code, grouping the registries and also making

search using different criteria.

 Extra flexibility is added by the possibility of

noting a registry as AWARE. Thus it is placed in this

category and viewed only if necessary. This is made

because of the fact mentioned above: quality is a

perceptual, conditional and somewhat subjective concept.

So there is also room to ignore some coding standards due

to some subjective reasons.

2.3 Imlemented algorithms

2.3.1 Greedy methods search

 The method belongs to the class if it is

implemented in the class it is being called from or in its

base class. A borrowed method is a method which does not

belong to the class it is being called from. An own method

is considered to be either a method belonging to the class it

is being called from or a statement in the method which is

currently being evaluated.

 This algorithm searches the methods to find out

whether they do use many borrowed methods without

adding a significant number of their own methods. The

number of borrowed and owned methods is entered

manually. A method is considered a borrowed method if it

is not contained in this class or its base classes.

 The algorithm works in two steps: during the first

traverse of the parse tree it builds a dictionary of all own

methods for every class, during the second traverse it

counts the number of borrowed and own methods and if

their number exceeds the limits, adds the bad smell code

registry to the system.

2.3.2 Parallel hierarchy search

Ignoring the rules of this bad smell might lead to a

“combinatorial explosion” which basically means the

exponential growth of the number of classes without really

7th International Conference on Microelectronics and Computer Science, Chişinău, Republic of Moldova, September 22-24, 2011

 223

adding some functionality. Such smell is certainly the

result of someone’s carelessness or lack of knowledge of

OOP and must be avoided.

 There are two variations of this algorithm: search

based on naming convention and search based on methods

added on the next level of hierarchy. Anyhow the first steps

are the same: the class tree is divided into levels and each

branch having m classes is compared to each other branch

containing n classes using combinations. If derived class

set minus base class set for two classes in different

hierarchy branches are equal this is considered to be a

parallel hierarchy. In the case of named based search the

sets contain the parts of camel case class name split by the

capital letters. In the case of methods based search the sets

contain the methods belonging to the two classes in

different hierarchy branches.

3. CONCLUSION. FUTURE PLANS

 The current system corresponds to practically all

starting requirements – it is flexible, it is extendable, it is

cleanly built using design patterns.

The feature of duplicated code search was not

implemented yet. As it seems this feature might be one of

the central in the add-in. We plan to implement the

algorithm by Fei Ma [4, 5] but there is a need to set-up the

current grammar to support AST tree building, and we are

looking for a person which is good at building the formal

grammars for this task.

 The current movement tracking system could be

changed to a more intelligent one because thus far this

system hardly can be called a tracking one.

4. USED LITERATURE

1) Evans, E., “Domain-Driven Design - Tackling

Complexity in the Heart of Software”, 2004,

Addison-Wesley

2) Robert C. Martin “Design Principles and Design

Patterns”, 2000

3) Fowler, Martin “Refactoring. Improving the

Design of Existing Code”, 1999, Addison-Wesley.

4) Fei Ma, Christopher W. Fraser, William S. Evans

«Clone detection via structural abstraction», 2009,

Department of Computer Science, University of

British Columbia, Vancouver, Canada V6T1Z4.

5) F. Ma. «On the study of tree pattern matching

algorithms and applications». Master’s thesis,

Department of Computer Science, University of

British Columbia, the direct reference:

https://circle.ubc.ca/bitstream/handle/2429/18318/

ubc_2006-0557.pdf?sequence=1

