
7th International Conference on Microelectronics and Computer Science, Chişinău, Republic of Moldova, September 22-24, 2011

 274

I. INTRODUCTION

Information system design process includes different

type models development, including such models as:

information flow model, functional model, data model

and others. In this article will examine some model

representation methods used in different modeling

methodologies. After that will be made analysis of ways

to realize this methods on graph logic language developed

by the author.

Graph language for first order logic Horn clauses

representation was presented by the author in [1]. Purpose

of developed language consist in visual representation of

first-order logic formulas, saving formal semantics and

with possibility to translate graph language phrases to

Prolog language. Due to possibility of representation

models without rules of execution sequence, translation of

such models need to be used parallel version of Prolog

language.

Language is declared by vocabulary V={N, E}. N =

{F, P, O, Q} is a set of nodes and consist of functional

and predicate constants, logic operations and quantifiers.

E = {C, N, T} and represents connection, negative

connection, and term connection edges. O={AND, OR} is

a set of possible logic operations. Q={Empty, Existence,

Universal} is a set of possible quantifiers.

Language constructions consist of vocabulary elements

and relations in the form of (nodeFromType edgeType

nodeToType) and can be represented by the next

statements:

terms t ={Q, F, (t T F)}

predicate form fp = {P, (t T P)}

formula f = {fp, (fp C O), (fp N O)}

Horn clause fh = {fp, (f C fp), (f N fp)}

In this article, after presentation of models in existing

methodologies will be analyzed variants for using graph

language for presented models types. As an abstract

problem for information system modeling will be used

problem of students accounting. Some aspects of this

problem will be used as simple examples for models

representation.

Major examples will be presented in Prolog, with

comments for visual representation of particularities. Also

some examples will be represented on figures with

possibility to make comparison with existing methods.

II. PENDING MODELING METHODOLOGIES

For information systems modeling and software

development were proposed a variety of different

approaches and methodologies. Will examine some well-

known approaches, including those that have visualization

possibilities.

IDEF is a family of methodologies for modeling

complex information systems. Major part of this

methodologies based on visual syntax for model

representation. This family includes: IDEF0 is standard

for functional modeling, IDEF1 is standard for

information flow modeling based on ER (Entity-Relation)

models, and IDEF1X is an extension of IDEF1 for data

structure modeling. Syntax of IDEF0 and IDEF1 is quite

different, therefore different visions of information

system are independent one from another so user need to

study syntax of many different languages.

Rational Unified Process software development

framework applicable for whole software lifecycle, an

using Unified Modeling Language for development

vision, structure, and behavior models of information

system [2]. UML has visual syntax but doesn’t has formal

semantics for syntactic constructions. As a partial solution

of this disadvantage in second version of the language

was introduced OCL symbolic language for declaring

formal semantics applicable for whole model.

Contrary for visual languages exists symbolic (textual)

languages for formal specifications. Z is one of well-

known languages of such type. This language was

selected by many researches as formal base for complex

languages that have visual part (for example UML) and

formal part using Z-language[3]. For example Alloy is

one of this complex languages. Z language bases on first

order predicate logic and theory of sets.

All presented methodologies have different problems

for integration of different model types. Graph language

presented by the author can be used as unified language

for information system model declaration. Examination of

About possible methodology of information

systems modeling using graph logic language

Abstract —In the article will be examined variant of application graph logic language for modeling

information systems. With this purpose after comparison of some existing methodologies will be proposed

ways for language use, possible adaptation and extension. Proposed language evolution provides possibilities

to represent models with expressive power comparable or even more expressive than existing modeling

methods. For comparative examination were selected methodologies of IDEF family, UML and Z languages

Index Terms — logical representation, formal specification, information system modeling

Ian ORLOVSKI

Technical University of Moldova

ian.orlovski@gmail.com

7th International Conference on Microelectronics and Computer Science, Chişinău, Republic of Moldova, September 22-24, 2011

 275

such possibility will be made by overlaying existing

methodologies on proposed graph language. Identifying

problems and lacks indicates direction for language

adaptation, modification and evolution.

III. REPRESENTATION OF DATA FLOW MODEL

Data flow model is the simple model for conceptual

description of a system. At this level need to be defined

substantive processes and information flows between

them. This diagram can be extended on other levels of

development.

In IDEF family vision of the system can be represented

by the IDEF0 diagram or by the IDEF3 diagrams.

Detailed description of IDEF0 will be presented below in

functional modeling part. Basic principle of IDEF0 from

architectural point consist of idea that every function can

be decomposed on the set of connected child functions

which have input and output of the parent function.

IDEF3 in process description uses logic operations such

as AND, OR, XOR etc. for defining structure of object

interconnection.

In UML high level model of the system can be

represented by the component diagram. Components are

represented by the rectangle shapes but edges define

connection between them. Also this type of diagram has

possibility to define interfaces between components.

In Z language schemes represent objects, but relations

between objects can be interpreted as simple data flow

model. Scope of this language to define formal

specifications but not architecture of the system.

In proposed graph logic language system can be

represented as a set of predicates that denote processes

and quantified variables that connect this processes and

can be interpreted as data flow. Also predicates are

connected by the logic operators such as OR, AND. If

necessary a set of logic operators can be extended with

some more complex operators, for example XOR. As an

example of a system can be presented process of student

registration. Student as a person have personal data,

system for registration need to check existence of such

person in the database. If person doesn’t have record in

database occurs person registration and after that

registration this person as a student. In Prolog language

this discourse can be represented in the next form:

studentAdd(PersData, StudentID):-

 ((personNotExists(PersData),

 personAdd(PersData,PersonID))

;personExists(PersData, PersonID)),

 studentRegistration(PersonID, StudentID).

This clause can be interpreted as a simple data flow

diagram with basic blocks presented by predicates and

variables as data connections between them. Logic

operations also can be used similarly with IDEF3

notation.

IV. REPRESENTATION OF FUNCTIONAL MODEL

IDEF0 approach suggests decomposition of the system

on functions. Every function can be connected to other by

the one of four types: input, output, control and

mechanism. Directed connection edges define order of the

processes. Every function can be decomposed on the set

of child functions. An example of alternative student

registration process is presented on the fig.1.

Fig. 1 IDEF0 representation of student registration

process

A0

check

A0

add

A0

registration
PersonData

Rules of
documents
verification

Admission
rules

Personal
data

verification
system

Document
manageme
nt system

PersonData PersonID StudentID

In UML for function modeling Use-Case diagrams are

proposed. This diagram describes all participants of the

process (actors) and their roles. Processes can be inherited

from the other processes, for example include or extend

them. Inheritance type is defined by connection type

(include, extend).

Functional model in Z language is defined by the set of

schemas in which exists reference on objects [4]. So

functional model can be restored after searching of all

schemes referenced to the same objects.

In graph logic language function model can be

extended from the ideas presented in previous paragraph.

For mechanism and control flows we need define logic

functions which we connect to the predicates. Mechanism

and control entities are denoted by the functional

constants.

Also we need to resolve problem of flow direction. In

standard Prolog language direction is defined by the

direction of reading, but in parallel versions sequence of

execution can’t be defined. Since proposed graph logic

language has properties of parallel Prolog [5], we need to

implicitly declare sequence of processes execution.

Another requirement consists in objects flows direction.

For direction indication possibilities we need to

introduce some syntax extensions and changes. First, new

edge type will define sequence of the execution of

predicates of one nesting level. Level of nesting is defined

by the number of logic operators from the head of the

Horn clause to the examined predicate. Second, direction

of the term connection edge can be changeable (in

contrast of current syntax where direction is always from

the term) or even edge can be undirected in the case of

undefined direction. This change need to change

definition of the language from directed graph to the

mixed graph. For comparison with IDEF0 representation

of student registration process on Fig.2 presented version

in graph logic language with described changes.

Execution sequence edges are denoted by the dot line.

Using of quantifiers as data flows are controlled by the

directed term edges. In comparison with IDEF0 in model

can be uses logic operators for define algorithm for

system functions interconnection.

7th International Conference on Microelectronics and Computer Science, Chişinău, Republic of Moldova, September 22-24, 2011

 276

Fig. 2 Functional scheme of student registration process

ʌ

check

controlverificationRules

add

functionalScheme

PersonData

registration

PersonIData

mechanism

verificationSystem

PersonID

control admissionRules

documentSystem

mechanism

StudentID

V. REPRESENTATION OF DATA MODEL

For conceptual data scheme description widely use ER-

models (Entity-Relations) and ER-diagrams for their

visualization. This diagram defines a set of logic entities,

internal structure of this entities and relations between

entities. Relation defines not only fact of the connection

between entities, also contains information about

cardinality of this connection (for example one-to-one,

optional one-to-one, one-to-many etc.). Structure of the

entity is defined by the set of its attributes.

IDEFX1 standard extends ER model from the one side

and extends syntax of IDEF1 standard from the other side.

In IDEFX1 has been added next possibilities: declaration

of attributes data type, definition of entities identifiers and

identifiers of referenced attributes. Thus described

extensions leads IDEF1X definition to the physic model

of relational database.

Class diagrams of UML have more important role, but

not only system structure definition. Class definition

defines attributes, their datatype, connectors defines

cardinality of relations between classes. Moreover

connections in class diagrams defines levels of

inheritance between classes. Also class definition contains

methods of its use. This approach tends from purpose for

declaration models closest to the program code. So

expressive power for defining data structure is equal in

IDEFX1 and UML languages.

Using Z language entity can be described as scheme

with attributes and their data types. Relations between

entities can be defined by set relations, with matching

between relation types in UML and Z [3]. Further

relations between schemes are allocated in special section

of specification. From user point of view this feature of

symbolic languages tends to loss of connection between

entity declaration and relations between them, while in

visual methodologies presented before relations

representation is base part of diagram syntax. An example

of UML version of ER diagram presented on the Fig. 3

Fig. 3 UML representation of ER model

-Name
-Prename
-DateBirth
-PersonID

person

-PersonID
-StudentID
-...

student

1

0

-StudentID
-Speciality
-Date
-...

contract

1 n

Simple ER diagram in graph language can be

represented as a set of predicates which represents

relations between terms which represent entities in the

form of functional constants. But for an adequate

description of data model we need to extend graph

language and to introduce ways for description for next

features: entities attributes including attributes data types,

relations cardinality properties. With this approach

predicates represents entities, quantifiers connect

functions named “datatype” with entity predicates. Next

will introduce function “relation” which has quantifier for

entity identifier on input and cardinality properties of

input and output. This function connects to predicate

which represent entity to which connected this relation.

Moreover this function can be named with any identifier

for declaring relation between entities of such type.

Example of student ER diagram is represented on Fig. 4.

7th International Conference on Microelectronics and Computer Science, Chişinău, Republic of Moldova, September 22-24, 2011

 277

Fig. 4 Representation of ER diagram in graph logic language

ʌ

person
Prename

Name

BirthDate

datatype

datatype

datatype

string

string

date student

erDiagramm

relation

1 0

contract

relation

1 n

Speciality

Date
...

PersonID StudentID

VI. CONCLUSION

In this article has been reviewed existing

methodologies for some types of information systems

models. After comparative analysis of different

representation variants were selected those most

expressive, which have been used as a base for adaptation

and extension of graph logic language for modeling

purpose.

Was proposed introduction of execution direction

(sequence) edge between predicates of same level of

nesting. Also has been changes the principle of term edge

direction. Currently this edge indicates data flow direction

(flow pattern) and even can be undirected, leads to change

the type of graph from directed to the mixed graph.

For possibility of description of some model features

was proposed to introduce specific functions, for example

data types declaration. This principle can be interpreted as

a substantive part of methodology which give possibilities

to extend language with ease for it application in

different modeling processes.

Distinctive property of using one language for different

model types gives advantages for users that deals with

different models in process of development. They need to

know only one language with special predicates or

functions for different variants of modeling.

REFERENCES

[1] I. Orlovski, A Variant of Vocabulary and Syntax of

Graphical Representation Method of First Order

Predicate Logic Formulas, Economy Informatics, Vol

VIII, No. 1, 2008

[2] Noran O. Business modeling UML vs. IDEF.:

Griffith.: Griffith University, 2002. 53 р.

[3] L.E.G. Martins, An Empirical Study Using Z and

UML for the Requirements Specification of an

Information System, In: EMPIRICAL SOFTWARE

ENGINEERING LATIN AMERICAN WORKSHOP

(ESELAW), Uberlândia. Proceedings of the 2nd

Empirical Software Engineering Latin American

Workshop. 2005.

[4] J. M. Spivey, The Z Notation: A Reference Manual,

Oriel College, Oxford, England, 1998

[5] Орловский Я.С., К вопросу о разработке и

реализации формального графового языка для

представления логических моделей, DSMSI-2011,

Abstracts of conference reports, Kyiv, Ukraine, May

25-27, 2011

