

ОДЕЖДА ДЛЯ МОТОЦИКЛИСТОВ: ПОВЫШЕНИЕ ТЕПЛОЗАЩИТНЫХ СВОЙСТВ

АРАБУЛИ Арсений, ЧАБАНЮК Галина

Киевский национальный университет технологий и дизайна, Украина

Реферат: В последнее время езда на мотоцикле становится все более и более популярной. Известно, что даже в относительно теплую погоду, движущийся на большой скорости мотоциклист постоянно подвержен воздействию ветра, и езда может привести к негативному воздействию на организм человека, а именно к гипотермии. Гипотермия является условием субнормальной температуры тела человека, что может привести к потере концентрации, замедлению реакций, и потере плавности и точности движений мыши. Мотоциклист может потерять способность к концентрации и реагированию на изменения условий движения. Правильно подобранная одежда, а именно, использование ветрозащитных курток, теплоизоляционных слоев одежды. имеют большое значение. В статье представлены результаты исследования возможности использования альтернативных методов улучшения теплозащитных свойств одежды мотоциклиста – использование электрических нагревательных элементов. Были теплофизические свойства, воздухопроницаемость водонепроницаемость одежды для мотоциклистов с электронагревательным Результаты исследований указывают эффективность использования электронагревательного элемента в костюме мотоциклистов.

Ключевые слова: гипотермия, одежда мотоциклиста, теплозащитные свойства.

1. ВВЕДЕНИЕ

На сегодня существует большое разнообразие одежды для мотоциклистов, которое зависит от вида и стиля мотоцикла, а также от его назначения (для определенного вида спортивных соревнований или применяется в быту для перемещения из пункта А в пункт Б). Одежда для мотоциклистов подразделяется на 3 группы [1]:

- 1) незащитная (одежда создает защитный барьер погодным условиям: ветер, дождь, снег и т.д.);
- 2) незащитная, но в отличие от 1-й группы, 2-я укомплектована протекторами с маркировкой
 в области плеч, колен, спины или локтей;
- 3) защитная (одежда с повышенной защитой за счет использования пластиковых протекторов, соединенных между собой).

К одежде мотоциклистов выдвигают ряд основных требований. В первую очередь одежда должна быть надежной, в связи с повышением травматизма человека во время соревнований, ДТП, падений. На сегодня требования надежности обеспечиваются за счет защитных вставок и конструкторско-технологических элементов одежды (силуэт, форма, покрой) [2-4]. Удовлетворение эстетических и эргономических требований остается также актуальным. Улучшение эстетических требований одежды может обеспечивается за счет использования светоотражающих материалов и элементов, которые также информируют о присутствии мотоциклиста на дороге в темное время

суток. Улучшение эргономических требований, особенно в прохладную погоду, должно быть направлено на исключение гипотермии у мотоциклиста. Поэтому повышение теплозащитных свойств пакета материала для мотоциклистов за счет использования различных материалов, в том числе нагревательных элементов, которые подключаются к системе питания мотоцикла, является актуальным.

2. ЭКСПЕРИМЕНТ

2.1. Материалы

В работе рассматривалась одежда для мотоциклистов первой группы – незащитная (одежда создает защитный барьер погодным условиям). В соответствии с назначением и были подобраны для исследования текстильные материалы, которые используются для одежды этой группы. Характеристики текстильных материалов приведены в таблице 1.

Таблица 1: Структурные характеристики текстильных материалов

Условное обозначение	Волокнистый состав [%]	Ширина [см]	Поверхностная плотность [г/м²]		
Ткань верха					
45103	ПЭ – 100	150	130		
100596	ПЭ – 100	150	215		
Ткань подкладки					
32115	ПЭ – 100	150	92		

Поскольку ассортимент курток для мотоциклистов с наличием утепляющей подкладки не позволяет обеспечить полностью комфортные условия (удовлетворить эргономические требования) на случай резкого изменения температуры воздуха, был предложен нагревательный элемент, нагрев которого осуществляется за счет подключения его к системе питания мотоцикла. Нагревательный элемент, который расположен внутри нетканого материала состоит из нихромовой проволки. Схема и изображение подключения нагревательного элемента к мотоциклу изображена на рис. 1 и рис. 2.

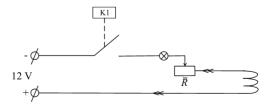


Рисунок 1: Схема подключения нагревательного элемента к мотоциклу

Рисунок 2: Подключение нагревательного элемента к мотоциклу

Для исследования свойств пакета одежды для мотоциклиста были рассмотрены два вида пакетов, которые отличаются тканью верха. Полный пакет материалов состоит из ткани верха + ткани подкладки + нагревательного элемента + ткани подкладки:

- пакет №1 45103 + 32115 + нагревательный элемент + 32115;
- пакет №2 100596 + 32115 + нагревательный элемент + 32115.

2.2. Методы исследования

Структурные характеристики текстильных материалов определялись по стандартным методикам согласно ГОСТ 3811–72.

Водоупорность текстильных материалов с гидрофобными отделками (ткань верха) определялась методом дождевания в соответствии с ГОСТ 3816–81.

Воздухопроницаемость полотен оценивалась показателем коэффициент воздухопроницаемости по методике ДСТУ ISO 9237-2003 на приборе FF12.

Для определения температуры в пододежном пространстве использовалась не стандартизированная методика. Исследование проводилось в реальных условиях: в темное время суток, на мотоцикле Yamaha YZF-R6 по дороге с асфальтным покрытием. Скорость езды от 10 до 60 км/ч (интервал — 10 км/ч). Температура воздуха составляла от 10 до 20 \pm 2°C с интервалом 5°C, скорость ветра колебалась от 0 до 4 м/с. Температура в пододежном пространстве измерялась цифровым термометром WSD-10.

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Результаты показателей гигиенических свойств текстильных полотен и пакетов на их основе представлены в таблице 2. Анализ результатов исследования воздухопроницаемости тканей верха указывает на их очень близкие значения, однако наблюдается тенденция снижения способности пропускать воздух через свою структуру у ткани 100596 по сравнению с тканью 45103. Такая же тенденция сохраняется и при исследовании пакетов материалов.

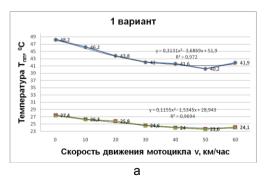
T ~ ~ ~			
I annula 2	I NENGHINUGERING EBONETBA	текстильных полотен и па	RETOR HA MY OCHORE

Условное обозначение	Коэффициент воздухопроницаемости [дм³/м²с]	Водоупорность [мин]			
Ткань верха					
45103	3,1	10			
100596	2,9	20			
Пакет материалов					
1	2,9	-			
2	2,4	-			

Проведенный анализ результатов исследования материалов на водоупорность позволил установить, что выбранные материалы по описательной шкале согласно ДСТУ ISO 4920:2005, соответствуют уровню 3 (увлажнение обрызганной поверхности только на небольших отдельных участках).

Полученные результаты по водоупорности и коэффициенту воздухопроницаемости предложенных материалов позволяют рекомендовать для одежды мотоциклиста ткань 100596. Для дальнейших исследований, а именно для изготовления куртки мотоциклиста, была выбрана ткань верха 100596 (пакет №2).

Исследование температуры в пододежном пространстве проводилось в движении на мотоцикле в реальных природных условиях. Входными данными для проведения исследований выбраны температура воздуха (Твозд, °С), скорость ветра (v, м/с), влажность воздуха (W,%). Исследования проводились в трех вариантах при различных климатических условиях (табл. 3). Графические отображения изменения температуры пододежного пространства представлены на рис. 3 (на примере варианта 1 и варианта 2).


Анализ данных результатов исследований показал, что характер изменения температуры пододежного пространства одинаков для всех вариантов. С увеличением скорости движения мотоцикла до 60 км/ч температура пододежного пространства в среднем уменьшается на $3.5-5.0\,^{\circ}$ С. Однако использование нагревательного элемента, нагрев которого осуществляется за счет подключения его к системе питания мотоцикла, позволяет поддерживать температуру пододежного пространства куртки мотоциклиста в пределах 41 – 45 $^{\circ}$ С, тем самым, исключая гипотермию. Температура пододежного пространства куртки с выключенным нагревательным элементом почти на 20 $^{\circ}$ С меньше по сравнению с исследованиями, проведенными при включенном нагревательном элементе.

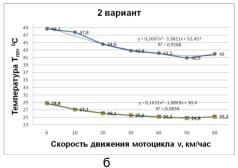

Недостатком данных исследований можно считать сложность определения температуры пододежного пространства в движении при скорости более 60км/ч, а также отсутствие системы управления нагревательным элементом. Наличие системы управления позволит более точно контролировать и регулировать температурные режимы пододежного пространства одежды.

Таблица 3: Динамика изменения температуры пододежного пространства

ант Вания истика неских		CTb IKMa, ac]	Температура пододежного пространства, Тոп [ºC]	
Вариант исследования	Характеристика климатических условий	Скорость мотоцикла, [км/час]	Нагревательный элемент выключен	Нагревательный элемент включен
		0	27,4	48,2
		10	26,3	46,2
	$T_{BO3J} = 10 \pm 2^{\circ}C;$	20	25,8	43,8
1	v = 4 M/c;	30	24,6	42,0
	W =94%	40	24,0	41,6
		50	23,6	40,2
		60	24,1	41,9
		0	28,8	48,7
	$T_{\text{возд}} = 15\pm 2^{0}\text{C};$ $v = 2 \text{ M/c};$	10	27,1	47,8
2		20	26,1	44,6
		30	25,6	42,8
	W =80-88%	40	25,2	42,2
		50	24,8	40,9
		60	25,2	42,0
	$T_{\text{возд}} = 20\pm2^{0}\text{C};$ v = 3 м/c; W = 53%	0	30,6	49,0
3		10	29,0	47,9
		20	28,2	46,6
		30	27,6	44,8
		40	26,5	44,1
		50	26,0	43,2
		60	26,3	44,8

Рисунок 3: Графическое отображение изменения температуры пододежного пространства:

а – вариант 1, б – вариант 2

4. ВЫВОДЫ

Результаты исследований указывают на эффективность предложенного в работе нетрадиционного метода повышения теплозащитных свойств одежды мотоциклиста, а именно, использование электрического нагревательного элемента, нагрев которого осуществляется за счет подключения его к системе питания мотоцикла. К недостаткам данного электрического нагревательного элемента необходимо отнести отсутствие системы управления, которая позволит более точно контролировать и регулировать температурные режимы пододежного пространства одежды.

5. ЛИТЕРАТУРА

- [1] Одяг для мотоциклістів *Available from* http://carz-info.com/repair-and-tuning/useful-tips/item/315-мотэкипировка-что-это-и-зачем?
- [2] Защитная мотоэкипировка. Часть 1. Одежда для мотоциклистов и европейские стандарты Available from http://motosalon.tomsk.ru/stati/motoekipirovka/zaschitnaja-motoekipirovka-chast-1-3.html
- [3] Защитная мотоэкипировка. Часть 3. Объяснение европейских стандартов и способы тестирования защиты *Available from* http://www.motorland.ru/1mc2008/protective_gear_p3.html
- [4] О мотоэкипировке и безопасности Available from http://rapids.ru/ekip/