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Abstract: It was demontrated theoretically that organic crystals of TTF-TCNQ are good candidates for 
thermoelectric materials. Because not all parameters of these materials are known, it is necessary to 
determine some of them. We’ll use the Peierls transition phenomenon  for this aim. In this work we study 
how the photon spectrum varies in quasi-one-dimensional organic crystal TTF-TCNQ close to Peierls 
transition. In the frame of the model, there are considered two the most important electron-phonon 
interactions. The equation for phonon Green function is deduced in the random phase approximation as a 
sum of diagrammatic ladder series of close loops of electronic Green functions. The renormalized phonon 
spectrum is presented for the Peierls model (with one molecule in an unit cell), and for the real model of the 
crystal (with two molecules in an unit cell).   
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1. Introduction 

The quasi-one-dimensional (Q1D) organic crystals of TTF-TCNQ (tetrathiofulvalinium 
tetracyanoquinodimethane) represent an important research object. These materials have promissing 
applications in thermoelectricity. Because not all parameters of these crystals are known, it is very important 
to apply different methods to determine them. We’ll use the phenomenon of Peierls transition for this aim.  

The structural Peierls transition was theoretically predicted by Rudolf Peierls who has established that 
the strictly one-dimensional lattice formed by ions with one conduction electron for each ion is unstable at 
zero temperature. Due to interaction of conduction electrons with the periodic field and with acoustic 
phonons, in terms of energy it is more convenient to deform uniform lattice and the constant of lattice to be 
doubled. It is said that lattice dimerization occurs. At dimerization the mechanical elastic energy of the 
lattice increases. But electron-lattice interaction leads to the renormalization of electronic spectrum and the 
energy of electron system decreases. Under certain conditions, the latter can overcome the increase of lattice 
energy, and then for whole system it is favorable to pass in dimerized state with lower total energy. But this 
leads to appearance of a forbidden energy band just above the Fermi energy. As a result, the crystal which 
before dimerization was metal after dimerization becomes dielectric. Usually, the factor which leads to 
dimerization state is the temperature decreasing. Thus, at a given temperature the one-dimensional metallic 
crystal has to pass in a dielectric state. The transition temperature is called the critical Peierls temperature. 

The Peierls transition has been studied by many authors (see [1-2] and references therein). The aim of 
this paper is to describe in more detail Peierls transition phenomenon and to present the results obtained for 
the real model of the crystal, when  the Fermi dimensionless quasi momentum is kF = 0.59/2. 

In the previous papers [3-4] the Peierls structural transition in Q1D crystals of TTF-TCNQ type was 
investigated in a 1D physical model of the crystal. The renormalized phonon spectrum has been calculated 
for different temperatures in the case when the conduction band is half filled and the Fermi dimensionless 
quasi momentum is kF = /2 and in the case when the concentration of conduction electrons is reduced and 
the band is filled up to a quarter of the Brillouin zone, kF = /4, [4].  

In this paper we also apply the 1D physical model, for a value of kF = 0.59/2, that corresponds to a real 
model of the crystal. For a more precise result, it was considered two important electron-phonon interactions. 
One of them is of deformation potential type and the other is similar to that of the polaron. The ratio of 
amplitudes of the second interaction to the first one along chains and in transversal directions is 
characterized by the parameter γ. The renormalized phonon spectrum was modeled for different values of γ.  
 

2. The model of the crystal 
The model of the crystal was described in detail in [4]. The TTF-TCNQ compound forms quasi-one-

dimensional organic crystals composed of TCNQ and TTF linear segregated chains. The tranfer rate of 
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Fig. 1. Renormalized phonon spectrum 
Ω(q) for  = 0.3, z = 1 and different 
temperatures. The dashed line is for the 
spectrum of free phonons.  
 

electrons from an one molecule of TCNQ to an one molecule of TTF is 0.59 and the crystal has a mixt 
valence. The TCNQ molecules are strong acceptors, and the TTF molecules are donors. Because the 
conductivity of TTF chains is much lower than that of TCNQ chains, the first one can be neglected in the 
first approximation. Also, we’ll neglect the interaction between TCNQ chains because electrical conductivity 
in the transversal to chains direction is almost three orders of magnitude smaller than along the chains. Thus, 
the conduction electrons move in an one-dimensional energy band. 

In order to determine the renormalized phonon spectrum, the method of Green functions will be applied. 
We will use the Feynman diagrams technique for temperature-dependent Green functions [5], and then will 
analytically extend the previous functions from the discrete frequencies into the upper half plane of the 
complex frequency. The Green function pole will determine the phonon spectrum. 

From exact series of the perturbation theory for the phonon Green function, we sum up the diagrams 
containing 0,1,2, ... ∞ closed loops of two electron Green functions which make the most important 
contribution. This is random phase approximation. We denote the phonons Green function in this 
approximation by ),( ttxxD  , and the free phonons one by ),(0 ttxxD  , where x and x  are 

spatial coordinates, t and t  - time coordinates. For the function ),( ttxxD   an integral equation is 
obtained. Performing Fourier transformation after spatial and time coordinates, we obtain the Fourier 
component of the Green function D(q,) 
 

                                                   ,,,,, 00 qDqqDqDqD  ,                                     (1) 

 
where  q,  is the polarization operator. Introducing instead of  q,  a new dimensionless polarization 
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Here A(k, q) is the matrix element of electron-phonon interaction presented in [4], nk is the Fermi distribution 
function, and ħ is the Planck constant. The integral in (2) has singularities and must be calculated as Cauchy 
principal value. The renormalized acoustic phonons spectrum Ω(q) is determined by the pole of function  
D(q,) and is obtained from the transcendent dispersion equation 
 

                                                2/1)],(1[)(  qq q                                                             (3)  

 
This equation can be calculated only numerically. 

 
3. Results and discutions 
The numerical calculations for renormalized 

phonon spectrum, Ω(q) , for different temperatures 
are presented in Figs. 1-6. In Figs. 1-3 are 
presented the calculations for Peierls model (with a 
single molecule in an unit cell), and in Figs. 4-6 
are presented the calculations for the real model of 
the crystal (with two molecules in an unit cell).  
The calculations were performed for the following 
parameters:  w = 0.125 eV,  w  = 0.2 eV Å-1, b = 
3.82 Å, vs = 3.24·105 cm/s (in the case when we 
have one molecule in an unit cell), vs = 3.71·105 
cm/s (in the case when we have two molecules in 
an unit cell). M = 3.7·105me (me is the mass of the 
free electron), z = 1 (in the case when we have one 
molecule in an unit cell) and z = 2 (in the case 
when we have two molecules in an unit cell). 

In Fig. 1 it is considered the case when  = 0.3 
and z = 1. From the graph it is evident that the 
maximum of (q) is diminished in comparison 
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with the frequency ω(q) in the absence of electron-
phonon interaction. With a decrease in temperature 
the curves change their form, and in dependencies 
(q) appear two minimums. These minimums 
become more pronounced at lower temperatures. 
At T ~ 30 K the frequency (q) is about zero for 
qb = 0.58 and qb = 1.4. This means that, at this 
temperature, the structural Peierls transition takes 
place. The crystal lattice changes from the initial 
state with the lattice constant b to a new crystalline 
state with constant 4b, that is four times larger. 

In Fig. 2 it is shown the case where  = 0.44 
and z = 1. In this case the frequency (q) becomes 
zero for qb = 0.58 and qb = 1.4 at T ~ 54.1 K. 
This means that Peierls transition occurs at a 
higher temperature. Note, that this value of 
temperature coresspond with the experimental 
data. 

In Fig. 3 it is presented the case when  = 0.5 
and z = 1. From the graph it is seen that  the slope 
of curves at small qb is diminished. This means 
that the elasticity force of interaction between two 
nearest molecules as a consequence of electron-
phonon interaction decreases. As a result the sound 
velocity along the chains is diminished. The 
Peierls transition takes place at T ~ 69 K. It is 
observed that with increase of parameter , the 
Peierls critical temperature also increase. 

In Fig. 4 it is shown the renormalized phonon 
spectrum Ω(q) for  = 1.5, z = 2 and different 
temperatures. From the graph one can see that 
unlike the previous case, when z = 1, the 
maximum of (q) is diminished less. It happens 
because the sound velocity increased slightly. It is 
evident that in the real model of the crystal, when z 
= 2, the parameter  increased significantly. As in 
the first case it is observed that at lower 
temperatures the minimums become more 
pronounced. The frequency (q) is about zero for 
qb = 0.58 and qb = 1.4 at T ~ 40.2 K. This 
means that Peierls transition occurs at this T. 

From Fig. 5 one can observe that the Peierls 
transition takes place at T ~ 54.1 K, which 
corresponds to the experimental data. This 
temperature corresponds to  = 1.6. From the 
figure it is seen that  the slope of curves at small qb 
is diminished. 

In Fig. 6 it is shown the case for Ω(q) when  
= 1.7 and z = 2. It is observed that  the slope of 
curves at small qb is diminished more. This means 
that the sound velocity along the chains is 
diminished additionally. The Peierls critical 
temperature in this case has a value of   T ~ 71.9 K. 
For the real model of the crystal also it is observed 
an increase in temperature with the increase of 
parameter  . 

Fig. 2. Renormalized phonon spectrum 
Ω(q) for  = 0.44, z = 1 and different 
temperatures. The dashed line is for the 
spectrum of free phonons.  
 

Fig. 3. Renormalized phonon spectrum 
Ω(q) for  = 0.5, z = 1 and different 
temperatures. The dashed line is for the 
spectrum of free phonons.  
 

Fig. 4. Renormalized phonon spectrum 
Ω(q) for  = 1.5, z = 2 and different 
temperatures. The dashed line is for the 
spectrum of free phonons.  
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4. Conclusions 
We have studied the effect of Peielrs 

transition on the phonon spectrum in organic 
crystals of TTF-TCNQ. The renormalized acoustic 
phonon frequencies (q) are calculated in two 
cases: when we have one molecule in an unit cell 
(z = 1), this is Peierls model, and when we have 
two molecules in an unit cell (z = 2), that 
corresponds to the real model of the crystal. Unlike 
other papers, we applied a more complet crystal 
model, that takes into account two the most 
important electron-phonon interactions. The first 
interaction is of deformation potential type and the 
second one is similar to that of polaron. The ratio 
of amplitudes of the second interaction to that of 
the first one is characterized by the parameter γ. It 
is evident that for the real crystal model the 
parameter γ it is much higher.  In both cases, the 
Peierls critical temperature is different for different 
values of . In the case when z = 1, for  = 0.3, T ~ 
30 K ; for  = 0.44, T ~ 54.1 K and for  = 0.5, T ~ 
69 K. When z = 2, for  = 1.5, T ~ 40.2 K ; for  = 
1.6, T ~ 54.1 K and for  = 1.7, T ~ 71.9 K. It is 
observed that in both cases with an increase in , 
the Peierls critical temperature increase and the 
sound velocity considerably decreases. It was 
shown that for larger values of , the electron-
phonon interaction becomes stronger and the 
modifications of (q) become more pronounced. 
In all cases the frequency (q) is about zero for qb 
= 0.58 and qb = 1.4, having a different transition 
temperature. This means that, at this temperature, 
the structural Peierls transition takes place. The 
crystal lattice changes from the initial state with 
the lattice constant b to a new crystalline state with 
constant 4b. 
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Fig. 5. Renormalized phonon spectrum 
Ω(q) for  = 1.6, z = 2 and different 
temperatures. The dashed line is for the 
spectrum of free phonons.  
 

Fig. 6. Renormalized phonon spectrum 
Ω(q) for  = 1.7, z = 2 and different 
temperatures. The dashed line is for the 
spectrum of free phonons.  
 


