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Abstract 

 

 The properties of two-dimensional (2D) cavity polaritons subjected to the action of  

strong perpendicular magnetic and electric fields giving rise to the Landau quantization (LQ) of 

the 2D electrons and holes accompanied by the Rashba spin-orbit coupling (RSOC) and by the 

Zeeman splitting (ZS) have been investigated. A strong magnetic field, where the electron and 

the hole cyclotron energy frequencies are greater than the binding energy of the 2D  

Wannier-Mott excitons, completely reconstructs it transforming into a magnetoexciton, the 

structure of which is determined by the Lorentz force rather than by the Coulomb electronhole 

(eh) interaction. 

 We predict drastic changes in the optical properties of the cavity polaritons including 

those in the state of Bose-Einstein condensation. The main of them is the existence of a multitude 

of the polariton energy levels closely adjacent on the energy scale, their origin being related with 

the LQ of the electrons and holes. Most of these levels exhibit nonmonotonous dependences on 

magnetic field strength B with overlapping and intersections. More so, the selection rules for the 

band-to-band optical quantum transitions, as well as the quantum transitions from the ground 

state of the crystal to the magnetoexciton states, essentially depend on numbers ne and nh of the 

LQ levels of the eh pair forming the magnetoexciton. By slowly changing the external magnetic 

and electric fields, it is possible to change the lowest polariton energy level, its oscillator 

strength, the probability of the quantum transition, and the Rabi frequency of the polariton 

dispersion law. They depend on the relation between numbers ne and nh and can lead to  

dipole-active, quadrupole-active, or forbidden optical transitions. Our results are based on the 

exact solutions for the eigenfunctions and the eigenvalues of the Pauli-type Hamilonian with 

third order chirality terms and a nonparabolic dispersion law for heavy-holes and with first order 

chirality terms for electrons. They were obtained using the method proposed by Rashba [1]. 

 We expect that these results will also determine the collective behavior of the cavity 

polaritons, for example, in the GaAs-type quantum wells embedded into a microcavity, which 

have recently revealed the phenomenon of the Bose-Einstein condensation in the state of the 

thermodynamic quasi-equilibrium but in the absence of a strong perpendicular magnetic field. 

 

1. Introduction 

 

 The aim of this study is to determine the properties of the two-dimensional (2D) 

polaritons arising in the frame of a quantum well (QW) embedded into a microcavity and 
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subjected to the action of a strong perpendicular magnetic field, giving rise to the Landau 

quantization (LQ) of the 2D electrons and holes accompanied by the Rashba spinorbit coupling 

(RSOC) and Zeeman splitting (ZS) effect. In the case of free electronhole (eh) pairs and a 

band-to-band quantum transition, the magnetic and electric fields with arbitrary intensities were 

considered; these aspects are discussed in the second section of this paper. The properties of 2D 

magnetoexcitons are investigated under the condition of a strong magnetic field when cyclotron 

energies frequencies 
c i

  with ,i e h  are greater than the binding energy of the 2D 

WannierMott excitons and magnetic length 
0

l  is smaller than the exciton Bohr radius. The 

binding energy of the 2D magnetoexcitons is obtainer taking into account the ionization potential 

determined by the Coulomb interaction in the frame of the eh pair.  

 In section two of our paper, the wave functions and the energy levels of the 2D electrons 

and heavy-holes are discussed. The calculations of the electronelectron Coulomb interaction are 

conducted in the third section using the spinor-type conduction and valence electron wave 

functions describing the LQ accompanied by the RSOC and by the ZS effects. The 

magnetoexciton energy levels arising from different combinations of the electron and hole states 

are investigated. 

 The fourth section is focused on the electronradiation interaction in the frame of the eh 

system confined on the 2D layer and the electromagnetic field arbitrarily propagating in the 

three-dimensional (3D) space as regards the 2D layer. The corresponding Hamiltonian describing 

the magnetoexciton-photon interaction is deduced. The formation of magnetoexciton-polaritons 

in a microcavity is discussed. It is the main goal of our paper. The conclusions are made in the 

fifth section.  

 

2. 2D electrons and holes under the influence of the perpendicular magnetic and  

electric fields. 

 

The Hamiltonians describing the LQ, RSOC, and ZS effect involving 2D electrons and 

holes were deduced in [16]. They have the form 
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 (1) 

Here, Bose-type operators ,a a


 generating Fock states m  were introduced and the 

following notation was used: 
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where 
c i

  are the cyclotron frequencies, 
i

Z  are the Zeeman parameters proportional to g -factors 

i
g  and to effective masses 

i
m  of the electrons and  holes, whereas 

0
m  is the bare electron mass; 

  is the nonparabolicity (NP) of the heavy-hole dispersion law,  a n d    are the parameters of 

the chirality terms, which are of the first order in the case of electrons [1] and of the third order in 

the case of heavy holes [78]. 

 The solutions of these equations were chosen in the dimensionless forms. For the electron 

case, we have  

1

2

2 2

1 2

;  ;  

;  ;  1

e
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fH
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In the coordinate representation, the wave functions are as follows:  

 
 

 
1 1
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b lL
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where 
x

L  is the length of the layer. These states were obtained firstly by Rashba [1] and are 

repeated here including Zeeman coefficient 
e

Z . 

Along with the solutions 
m


  with 0m  , there exists another solution with 

0
1b   of the type  

 
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0

001
;  ;  

02

ip x

e

x

e
Z r

L
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        (5) 

which is orthogonal to any solutions (4). 

In energy units, the energy spectrum is as follows:  

0 0

,  0 ,
m c e m

c e

E m

E

 

 

 
 



       (6) 

Below, we will consider only two lowest Landau levels (LLs) for conduction electrons, namely 

state 
0


  (4) and 

0
  (5).  

 The heavy-hole Hamiltonian in a dimensionless form has the form 
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The respective wave functions have the form 

 
 

 
3 3 3

,  ,
3

,   3 .

iq x

m m m

m m

m m mx

c m ce
r

d m dL

y
q l m

l

 
 

 



 

 

 

  

 


  

     (8) 

They obey the normalization and orthogonality  conditions  
2
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Along with solutions (8), there exist three other solutions with 0 1 2m , , .  They are: 
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All of them are orthogonal to previous solutions (8). 

  

3. The Coulomb electronelectron interaction and magnetoexcitons 

 

The three LLLs for 2D heavy-holes    w i t h  1 2 3
j

h , R j , ,  were combined with two LLLs 

for 2D conduction electrons    w i t h  1 2
i

e , R i ,  giving rise to six 2D magnetoexciton states 
n

F  

with 1 2 6n , . . .  [3, 4]. To calculate their ionization potentials, the Hamiltonian of the Coulomb 

electronelectron interaction under the conditions of LQ, RRSOC, and ZS is required. It was 

deduced in [3, 4] taking into account only the first two conditions, namely LQ and RSOC. Below, 

we will generalize those results adding the third condition, namely the ZS effects. The more so, it 

can be done because the Pauli Hamiltonians containing the Zeeman effects are represented by 
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operators  w h e re  
2

B

i z z

B
ˆ ˆg ,


   have only diagonal matrix elements. For the electronhole 

(eh) pair in the concrete combination  i m
R ,

  the Hamiltonian of the Coulomb interaction has 

the form 
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Here, the electron and hole density operators are:  
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with the normalization conditions 
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Along with the electron state 
1

R ,  we will consider state 
2

R  described by formulas (5). 
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The combination of electron state 
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R  with hole states 
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To determine the binding energy of the magnetoexciton, its wave functions  e x i
F , K  

were obtained acting on vacuum state 0  by magnetoexciton creation operator 
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The vacuum state is determined by the equalities  
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Below, a concrete composition  1
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
  with 3m   of the electron and hole states will 

be considered. 

The binding energy of the magnetoexciton is determined by the diagonal matrix element 

of Hamiltonian (11) calculated with wave function  e x i
F , k : 
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The binding energy of the magnetoexciton and its ionization potential, which has the 

opposite sign as compared with the binding energy, tend to zero if the wave vector k  tends to 

infinity and the magnetoexciton is transformed into a free eh pair. 
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4. Interaction of magnetoexcitons with the electromagnetic radiation and the formation of 

cavity polaritons 

 

 In [912], the Hamiltonians describing, using different approximations, the electron-

radiation interaction in the system of two-dimensional coplanar electrons and holes accumulated 

in the semiconductor QW and subjected to the action of a strong perpendicular magnetic field 

giving rise to the LQ of their energy levels were deduced. Only the case of the interband optical 

quantum transitions with the creation or annihilation of one electronhole pair in [9-12] was 

considered. The intraband quantum transitions were discussed in [13]. In [9], the exciton-

cyclotron resonance and the optical orientation phenomena [14] arising under the influence of the 

circularly polarized laser radiation were studied without taking into account the RSOC. The 

Hamiltonian deduced in [9] in the eh representation was transcribed in [10] so as to describe the 

magnetoexciton-photon interaction for the light arbitrarily propagating in the three-dimensional 

(3D) space as well as being confined in the microcavity. The dispersion law of the 

magnetoexciton-polariton in a microcavity was deduced. The dependence of the Rabi frequency 

on the magnetic field strength and the selection rule concerning the numbers of the LQ levels of 

the eh pair engaged in the dipole-active and quadrupole-active transitions were determined [10]. 

The influence on the optical properties of the magnetoexcitons on the band-to-band quantum 

transitions of the RSOC arising due to the action of a supplementary electric field perpendicular 

to the plane of the QW was investigated in  [3, 4, 11, 12]. The third order chirality terms in 

Hamiltonian (1) of the heavy hole induced by the electric field obliged one to introduce an 

additional  NP term of the same origin in the heavy-hole dispersion law. The NP term, together 

with the chirality terms, essentially changes the dependence of the energy levels on the magnetic 

field strength. The role of the NP term is to prevent the unlimited deep penetration of the energy 

levels of the 2D heavy-hole, as well as of the eh pair and the magnetoexciton, inside the energy 

band gap and contribute to the stability of the semiconductor band structure. In [3, 4, 11, 12], the 

effects related with the ZS were not discussed. This shortage is pieced out below. We will discuss 

the properties of magnetoexcitons and magnetoexciton polaritons taking into account the 

influence of a full set of four factors, such as LQ, RSOC, ZS, and NP. The Hamiltonian 

describing the magnetoexcitonphoton interaction including the ZS effects has exactly the same 

form as in [11] with only one difference that coefficients 
0

a
 , 

1
b

 , 
m

c
 , and 

3m
d




 with 3m   must 

be determined in [13] by the expressions containing nonzero Zeeman coefficients 
e

Z  and 
h

Z . In 

previous papers [3, 4, 11, 12], these coefficients were absent. 

 Following formula (41) of [11], the Hamiltonian of the magnetoexcitonphoton 

interaction has the form 

 

     

| |
1 1 , 2( , ) ,0 0

* - * †

| | | |, - ,

† †
* *

| | , ,

ˆ

ˆ, , · · ( , , )

ˆ, , · ·

( 0 ) ,

( 0 ) (

{ [ ( ) ( ) ]

[ ( ) ( ) ]

hz m m

h h

h h

e r a d

M ik k k z k

c v i M M e x h ik k k k

c v i M M e xk k k k

e
H

m l L

P T R k C C k M R

P T R k C C

  


     

    





   







 



 
   

 

  

  

   



     

 

| |

† †
†

| | | |, ,

* *

| | | |, ,

, , )

ˆ, , · · ( , , )

ˆ, , · · ( , , )

,

( 0 ) ,

( 0 ) , }

[ ( ) ( ) ]

[ ( ) ( ) ]

h h

h h

h i

c v i M M e x h ik k k k

c v i M M e x h ik k k k

k M R

P T R k C C k M R

P T R k C C k M R



     

     

 

 

 



 





     

    

  (21) 
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It differs from Hamiltonian (9) of [10] by the more complicate coefficients  | |
, ,

i
T R k , which in 

turn now contain generalized coefficients 
0

a
 , 

1
b

 , 
m

c
 , and 

3m
d




 given by the expressions 

determined in [13]. 

Hamiltonian (21) contains the creation and annihilation operators of magnetoexcitons 
†

| |

ˆ ( , , ),
e x h i

k M R  , 
| |
,ˆ ( , , )

e x h i
k M R   and photons †

,k
C


, 

,k
C


. The former were determined by 

formula (18) and are characterized by in-plane wave vectors 
| |

k  by orbital projection 
h

M  of the 

hole state in the frame of the p-type valence band and by quantum states 
i

R  and   of the electron 

and hole under the conditions of the LQ accompanied by the RSOC, ZS, and NP. Instead of 

quantum number 
h

M , circular polarization vector 
h

M
  will be introduced. The photon operators 

depend on wave vectors 
3 | |z

k a k k   arbitrary oriented in the 3D space, where 
3

a  is an unit 

vector perpendicular to the layer, and on polarization label  , which takes two values—1 and 

2—in the case of the light with linear polarizations 
,k i

e  or the signs   in the case of circular 

polarizations 
k




. The required denotations are: 

     

   

     

†
† †

, ,1 , 2 , ,1 , 2

,1 , 2 ,1

2

, , , ,

1

2
† † †

, , , ,

1

1 2 | | 1

1 1
,  ,

2 2

1
,  0 ,  1, 2 ,

2

,

,

1
( ) ,  

2
h

k k k k k k

k k k k

k i k i k k k k

i

k k i k k k k

i

M x

C C iC C C iC

e i e e k i

C e C C

C e C C

a ia k k a



 

 



 



 

 



 

  



  

    

 

 

   





 

2

3

,

0 ,  1,
h

y

M h

k a

a M    

   (22) 

Here 
1

a  and 
2

a  are the in-plane orthogonal unit vectors. The scalar products  
*

h
Mk

 

  

appearing in Hamiltonian (22) determine the ability of photon circular polarization 
k




 to create 

circular polarization 
h

M
  with probability  

2
*

h
Mk

 

 . It can be denoted as a geometrical 

selection rule. This probability is the same for any in-plane wave vector 
| |

k k  and equals to 1/4. 

If incident wave vector k  is perpendicular to layer 
3 z

k a k , the light with circular polarization 

k




 excites the magnetoexciton with the same circular polarization 
h

M k
 


  with the probability 

equal to unity. Another spinorbital selection rule is determined by coefficients  | |
, ,

i
T R k , 

which are expressed by formulas (36) of [11] as follows: 
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     

   

   

   

* * * *

1 | | 0 3 | | 1 | |

*

1 | | 1 | |

*

2 | | | |

2 | | | |

, ; 0 , 3 ; 1, ; ,  3 ,

, ; 1, ; ,  0 , 1, 2 ,

, ; 0 , ; ,  3 ,

, ; 0 , ; ,  0 , 1, 2

m m m

m

m m

m

T R k a d m k b c m k m

T R k b m k m

T R k c m k m

T R k m k m

  

 

 

 

    





 

   

  

  

  

  (23) 

Integrals  | |
, ;

e h
n n k  were introduces by formulas (32) of [11]. They have a general form and 

some particular values given below  

 

 

 
 

2 2

0 0

| |

2 2

2 0

| |

0

| |

, ; ,
2 2

0 , 0 ; 1 ,
2 4

0 , 1;

2

y

e h

i k yx x

e h n n

x

y

x y

k l k l
n n k d y y y e

k l
k k

k i k l

k

  







 

   
     

   

 
   

 







   (24) 

At point 
| |

0k  , they coincide with the normalization and the orthogonality conditions for wave 

functions ( )
n

y , which have real values. 

 Integrals (24) play the role of the orbital selection rules for the quantum transitions from 

the ground state of the crystal to the magnetoexciton states as well as for the band-to-band optical 

transitions. Following them in the case of the dipole-active transitions with 
| |

0k  , the selection 

rule is 
e h

n n .  

 

The zeroth order Hamiltonian describing the free 2D magnetoexcitons, the cavity photons, and 

their interaction has a quadratic form and consists of three parts  
0 0

2 m e x p h m e x p h
H H H H


         (25) 

For simplicity, denotation (18) of the magnetoexciton creation operators will be shortened as 

follows: 

   

   

   

   

   

   

1 1 3

2 2 3

3 1 0

4 2 0

5 1 4

6 2 4

, , , 1,

, , , 1,

, , , 1,

, , , 1,

, , , 1,

, , , 1,

e x e x

e x e x

e x e x

e x e x

e x e x

e x e x

F k k R

F k k R

F k k R

F k k R

F k k R

F k k R

  

  

  

  

  

  

  

  

 

 

  

  

 

 





 

 

     (26) 

In Hamiltonian 
2

H , only dipole-active magnetoexciton states 
1

F  and 
4

F  and quadrupole-active 

states 
3

F  and 
5

F  were included:  
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     
0

1 ,3 , 4 ,5

, , ,
m e x e x n e x n e x n

n

H E F k F k F k 




      (27) 

The remaining two states 
2 6

 a n d  F F  were excluded because they are forbidden in both 

approximations. 

The cavity photons have wave vectors 
3 z

k a k k   consisting of two parts. The longitudinal 

component is oriented along the axis of the resonator determined by unit vector 
3

a  perpendicular 

to the surface of the QW embedded inside a microcavity. It has a well-defined value of 
z

c

k
L


 

, where 
c

L is the cavity length. Transverse component 
1 2x y

k a k a k  is a 2D vector oriented in-

plane with respect to the QW and determined by two in-plane unit vectors 
1 2

 a n d  a a . Vectors 
k




 

of the light circular polarizations can be constructed introducing two unit vectors s  a n d  t  

perpendicular to light wave vector k  and to each other as follows:  

 

  3

1 2

3

1
;  ;  

2

;  

z zk

c

y xz

s i t k a k k k
L

k a k a kk k
s a t

k k k k





     


  

     (28) 

 They obey the orthogonality and normalization conditions  

     

 

   

0 ;  1

;  1

0 ;  1

k k k

k k k k

k t s k t s s t

  

   
 


  

  

       

 

   

     (29) 

and have the form 

    

 

2

3 1 2

1 1 2

1
;

2

1

2

x z y y z xk
a k a k k ik k a k k ik k

k k

a ia









     

 

  (30) 

 Here, magnetoexciton circular polarization vectors 
1




 determined by formula (22) are 

mentioned. The required scalar products of the photon and magnetoexciton circular polarization 

vectors are listed below: 

 

 

2 4 4
2

1

2 4 4
2

1

2
2

2

2

1
1 1 ,

2 2 2 1 6

1
1 1 ,

2 2 2 1 6

1 .

z z

k

z z

z z

k

z z

c

k kx x x

k k

k kx x x

k k

k L

x

 

 



 

 



   
         

  

   
         

  

 

    (31) 
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 In the case 0
z

c

k
L


  , we obtain the expression  

   

 

2
2 2

4

1 1

4
2 2

1 1

7
1 ,

2 1 6

,
1 6

k k

k k

x
x

x

   

   

   



   



 
      

 

   

   (32) 

 whereas in the opposite case 0
z

c

k
L


    they are  

   

   

4
2 2

*

1 1

2
2 2

4

1 1

1 6

7
1

2 1 6

k k

k k

x

x
x

   

   

  



   



   

 
      

 

     

 The zeroth order Hamiltonian of the cavity photons with wave vectors k   and circular 

polarizations 
k




 described in (28) has the form 

     
0

, , , ,

,
z

C

p h k k k k k

k k
L

H C C C C




 

   

 

 
 

  
      (33) 

 The creation and annihilation operators of the photons with circular polarizations 
k




  and 

with linear polarizations s  and t  are related as follows: 

 

   

   

, , ,

, , ,

, , , ,

, , , ,

1

2

1

2

k k s k t

k k s k t

k s k t k k k k

kk s k t k k k

C C iC

C C iC

s C tC C C

s C tC C C

 

 




 



 

 

 
   

 

 



  

  

    (34) 

 The Hamiltonian describing the magnetoexcitonphoton interaction including only the 

resonance terms and taking into account the two photon circular polarizations has the form   

 

 

       

       

       

 

1 1 1 1, ,

,

4 1 1 4, ,

3 1 1 3, ,

5 ,

, ,

, ,

, ,

,

z

c

m e x p h e xk k k k

k k
L

e xk k k k

e xk k k k

k k

H F k C C F F

F k C C F k

F k C C F k

F k C



     

     

     

 

    

   

 

   

 

   

 





     
 

     
 

     
 

 



      
1 1 5,

, . .
e xk k

C F k H C   
   

 

   
 

   (35) 

Coefficients  ,
n

F k  and their square moduli are: 
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   

   

   

   

2 2 22

1 0 0 1 0 0

2
2

4 4

2
2

2 2 02

3 1 0 3 1

2
2

2 2 2 02

5 0 0 0 5 0 0

, ;  ,

, ;  ,

, ;  ,
22

, ;  ,
22

c v c v

c v c v

x y

c v c v

x y

c v c v

c v

F k a d F k a d

F k F k

k lk i k
F k b l F k b

k lk i k
F k a d l F k a d

e

m

   

   

   

   



     

  

     

  

 

 
   

 

 
    

 

  
   

2 22

2

0 0 0 0 0 0

0 0
0 ;  ;  

c v c vc c c v c

c v c v o s c

c c

e P e Pn n n
P f

l c c m l c m l




    

 
    
 

   (36) 

 Below, the dimensionless value of 

2

e v

o s c

c

f



  playing the role of the oscillator strength 

will be used. Looking at those expressions, one can observe that the probabilities of the dipole-

active quantum transitions in magnetoexciton states 
1 4

 a n d  F F  determined by expressions 

 
2

1
,F k  and  

2

4
,F k   are proportional to 

2 2

0c v
l B


   and exhibit an increasing linear 

dependence on magnetic field strength B. In contrast, the probabilities of the quadrupole-active 

quantum transitions in magnetoexciton states 
3 5

 a n d  F F  are proportional to expression 
2 2

0c v
l  , 

which does not depend on magnetic field strength B at all. 

The equations of motion for four magnetoexciton annihilation operators  ,
e x n

F k  with 

1, 3 , 4 , 5n   as well as for the similar photon operators 
,k

C


 under the stationary conditions have 

the form 

     2

2, , ,

ˆ, , , ,

ˆ,

e x n e x n e x n

k k k

d
i F k F k H F k

d t

d
i C C H C

d t

   


  

  
 

  
 

    (37) 

Their particular expressions are: 

          

          

 

1 1, ,

1 1, ,

,

, , ,

                   1, 5

, , ,

                   3 , 4

e x i e x i ik k k k

e x j e x j jk k k k

k k k

E F k F k C C F k

i

E F k F k C C F k

j

C

      

      

   

   

  

   

 





     
 



     
 



       

           

     

1 1 1

1 4 4 1 3 3

1 5 5

, ,

, , , ,

, ,

e x

e xk k

e xk

F k F k

F k F k F k F k

F k F k

 

       

   



   

 





    

 

   (38) 
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Dipole-active state 
1

F  and quadrupole-active state 
5

F  can be preferentially excited by the light 

with circular polarization 
k




 propagating with 0
z

c

k
L


  , whereas dipole-active state 

4
F  and 

the quadrupole-active state 
3

F  mainly react to the light with circular polarization 
k




 propagating 

in the same direction with 0
z

c

k
L


  . In the case where Hamiltonians (33) and (35) contain 

photons only with one circular polarization—either 
k




 or 
k




— equations (38) give rise to the 

relations 

 
   

 

 
   

 

1

,

1

,

,

,

,

     1, 5

,

,

,

      3 , 4

ik

i k

e x i

jk

j k

e x j

F k

F k C

E F k

i

F k

F k C

E F k

j

  





  































     (39) 

Substituting these relations into equations of motion (38) for photon operators 
,k

C


, we will find 

two dispersion equations describing five branches of the energy spectrum of two different 

systems. One of them concerns the photons with circular polarization 
k




 propagating with 

0
z

c

k
L


   and exciting mainly magnetoexciton state 

1
F  as well as other states 

3 4 5
, ,F F F  with 

smaller oscillator strengths. The second system consists of magnetoexcitons in the same four 

states 
1 3 4 5
, , ,F F F F  existing in the frame of a microcavity filled by the photons with circular 

polarization 
k




 propagating with 0
z

c

k
L


  . These fifth order algebraic dispersion equations 

are 

 
   

 

   

 

   

 

   

 

2 22 2

1 1 1 4

1 4

2 22 2

1 3 1 5

3 5

,

, ,

,

, ,

k k

k

e x e x

k k

e x e x

F k F k

E F k E F k

F k F k

E F k E F k

     

 

 

     

 

 



 



 

   

 

 

 

 

   (40) 

They describe four magnetoexciton branches and one photon branch with a given circular 

polarization—either  o r  
k k

 
 

—where the photons propagate with 0
z

c

k
L


  . 

Now we will consider a particular case of cavity photons with circular polarization 
k




 

propagating in the direction with 0

c

k
L


   in the frame of a microcavity with cavity mode 

c
  
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tuned so as to coincide with the magnetoexciton level in state 
1

F  with wave vector 0k   at a 

given values of magnetic field ,  o f  t h e  e le c t r i c  f i e ld  
z

B E , with the parameter of the NP 

 a n d  w i th  f a c to r s   a n d  .
e h

C g g g  In this case, we can put  
1
, , 0

c e x
E F B  . To simplify the 

dispersion equation, we will use the dimensionless values introduced as follows:  

   1 1

;  1 ;  =
, , 0 , , 0

c

c e x c c e x

E E E

E F B E F B

  
 

  

 

  


    (41) 

 

The fifth order dispersion equation has the form 

 

 

 

 

 

 

 

 

2
2

0 0 1

2
42 2

0 0

2 22 2

1 4 1

2 2

1 1 4

2
6

2
0

1

3

1

2 , , 0

1
2 1 6

, , 0 , , 0 , , 0
1

, 2 , , 0 , 2

3 2

, , 0
1

, ,

c c v

e x

c e x e x c e x

e x

c

e x

e x

n e Px

c m l E F B

x x
a d

n E F B E F B n E F Bx x

M F B c E F B M F B c

l x
b

L

E F B

E F B




 





 



   
     

  

  
  

  
  

   


        

   

 

 

 


 

 

 

 

 

 

 

 

2
2 2

2 2
0

0 0

2 22 2

1 5 1

2 2

3 1 5

1
2 2

, , 0 , , 0 , , 0
1

0 , 2 , , 0 , 2

c

c e x e x c e x

e x

l x x
a d

L

n E F B E F B n E F Bx x

M F B c E F B M F B c





 

   
   
  

 
   


        


    

(42) 

  

 

 

In another special case, the cavity photons have circular polarization 
k




 and propagate in the 

direction with 0
z

c

k
L


  . Cavity mode energy 

c
  is tuned to magnetoexciton energy 

 
4

, , 0
e x

E F B . In this case, the energy is accounted from energy level  
4

, , 0
e x

E F B  as follows: 

 
 

 

4

4

4

, , 0 ;  1
, , 0

, , 0

e x

e x

e x

E F B E
E F B

E

E F B


 



   



    (43) 

 

The dispersion equation in the dimensionless variables has the form 
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Figure 1 shows five dimensionless polariton energy branches as a function of dimensionless 

wave vector x  in the absence of RSOC. They correspond to two different values of magnetic 

field strength 2 0  a n d  4 0  B    as well as to two different values of heavy-hole g -factor  

5
h

g   . The electron  g -factor is assumed to be 1
e

g  . Figures 1a and 1b suggest that a change 

in magnetic field strength B  does not have a considerable effect on the resulting pattern. 

Nevertheless, it should be borne in mind that the dimensionless values of  
p c

E x   were 

calculated with different values of cavity mode  
4

, , 0
c e x

E F B   depending on B . Figures 2 

and 3 show the influence of the RSOC with third order chirality terms and NP parameter C. The 

main effect consists in the transposition of the magnetoexciton energy levels on the energy scale 

in comparison with their position in the absence of RSOC. 

(44) 
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Fig. 1. Dimensionless polariton energy branches as a function of dimensionless wave vector x  in the 

absence of RSOC  0 ;  0
z

E C   at different values of magnetic field strength B, two values of the 

heavy-hole f a c t o r  5
h

g g    and at a given value of the electron g - factor 1
e

g  , as follows: 

 2 0  ,  5 ;
h

a B g     4 0  ,  5 ;
h

b B g     2 0  ,  5 ;
h

c B g      4 0  ,  5
h

d B g    .  

The magnetoexciton energy levels are denoted by 
1 3 4 5
, , ,F F F F , whereas the cavity mode by Cavity 

 
4

, , 0
c e x

E F B  . 
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Fig. 2. Dimensionless polariton energy branches as a function of dimensionless wave vector x  in the 

presence of the RSOC with electric field strength 
k V

3 0
c m

z
E   and the parameter of the NP 2 0C   at 

different values of magnetic field strength B , two values of the heavy-hole f a c t o r  5
h

g g    and 

electron f a c t o r  1
e

g g  , as  follows:  2 0  ,  5 ;
h

a B g     4 0  ,  5 ;
h

b B g    

 2 0  ,  5 ;
h

c B g      4 0  ,  a n d  5
h

d B g    . The magnetoexciton energy levels are denoted by 

1 3 4 5
, , ,F F F F , whereas the cavity mode by Cavity.  

4
, , 0

c e x
E F B  . 
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Fig. 3. Dimensionless polariton energy branches as a function of dimensionless wave vector x  in the 

presence of the RSOC with electric field strength 
k V

3 0
c m

z
E   and the parameter of the NP 3 0C   at 

different values of magnetic field strength B , two values of the heavy-hole f a c t o r  5
h

g g    and 

electron f a c t o r  1
e

g g  , as follows:  2 0 ,  5 ;
h

a B g     4 0 ,  5 ;
h

b B g    

 2 0 ,  5 ;
h

c B g      4 0 ,  a n d  5 
h

d B g    . The magnetoexciton energy levels are denoted by 

1 3 4 5
, , ,F F F F , whereas the cavity mode by Cavity.  

4
, , 0

c e x
E F B   
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 The following three figures show the case where the cavity mode is tuned to magnetoexciton 

energy level 
1

( , , 0 )
e x

E F B  rather than to level 
4

( , , 0 )
e x

E F B  as was supposed in the previous three 

ones. The three variants at a given energy level 
1

( , , 0 )
e x

E F B  are related with the absence (Fig. 4) 

and presence (Figs. 5, 6) of the RSOC with two different values of NP constant C = 20 and 30. 

 

 

 
Fig. 4. Dimensionless polariton energy branches in circular polarization    as a function of dimensionless 

wave vector x in the absence of the RSOC ( 0
z

E  , 0C  ) at the two different values of the magnetic field 

strength, at two values of the heavy-hole g-factor 5
h

g    and at a given value of the electron g-factor 

1
e

g   as follows: (a) B = 20 T, gh = 5; (b) B = 40 T, gh = 5; (c) B = 20 T, gh = -5; (d) B = 40 T, gh = -5. 

The magnetoexciton energy levels are denoted by F1, F3, F4, F5, whereas the cavity mode by Cavity. 

1
( , , 0 )

c e x
E F B  . 
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Fig. 5. Dimensionless polariton energy in circular polarization    as a function of dimensionless wave 

vector x in the presence of the RSOC with electric field strength 3 0 k V / c m
z

E   and the parameter of NP  

C = 20 at different values of magnetic field strength B, at two values of the heavy-hole g-factor 5
h

g    

and at the electron g-actor 1
e

g   as follows: (a) B = 20 T, gh = 5; (b) B = 40 T, gh = 5; (c) B = 20 T,  

gh = -5; (d) B = 40 T, gh = -5. The magnetoexciton energy levels are denoted by F1, F3, F4, F5, whereas the 

cavity mode by Cavity. 
1

( , , 0 )
c e x

E F B  . 
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Fig. 6. Dimensionless polariton energy in circular polarization    as a function of dimensionless wave 

vector x in the presence of the RSOC with electric field strength 3 0 k V / c m
z

E   and the parameter of NP  

C = 30 at different values of magnetic field strength B, at two values of the heavy-hole g-factor 5
h

g    

and at the electron g-actor 1
e

g   as follows: (a) B = 20 T, gh = 5; (b) B = 40 T, gh = 5; (c) B = 20 T,  

gh = -5; (d) B = 40 T, gh = -5. The magnetoexciton energy levels are denoted by F1, F3, F4, F5, whereas the 

cavity mode by Cavity. 
1

( , , 0 )
c e x

E F B  . 

 

 

5. Conclusions 

 

 The properties of the 2D cavity polaritons subjected to the action of strong perpendicular 

magnetic and electric fields have been studied. To this end, the exact solutions of the LQ of the 

2D heavy-holes accompanied by the RSOC with third order chirality terms, by the ZS effects as 
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well as by the nonparabolicity of their dispersion law have been obtained following the method 

proposed by Rashba [1]. His results concerning the conduction electrons have been supplemented 

taking into account the ZS effects. Using the mentioned wave functions for the 2D electrons and 

holes, the Hamiltonians describing the Coulomb electron-electron and the electron-radiation 

interactions in the second quantization representation have been deduced. In turn, the electron-

radiation interaction Hamiltonian has made it possible to construct another Hamiltonian 

describing the magnetoexcitonphoton interaction and begin the development of the theory of 

magnetoexciton-polaritons. To do this, the wave functions of the 2D magnetoexcitons are 

required. The six magnetoexciton states arising due to the composition of two LLLs for 

conduction electrons with three LLLs for heavy-holes have been taken into consideration. 

Between them, two states—
1

F  and 
4

F —are dipole-active, other two—
3

F  and 
5

F —are 

quadrupole-active, and the last two—
2

F  and 
6

F —are forbidden in the inter-band optical 

quantum transitions as well as from the ground state of the crystal to the magnetoexciton states in 

the GaAs-type QWs. The dispersion equation describing the magnetoexciton-polariton energy 

spectrum includes the first four states 
1 3 4 5
, ,  a n d  F F F F  interacting with the cavity photons in two 

selections of the cavity mode. These four magnetoexciton degrees of freedom together with the 

branch of the cavity photons give rise to five order dispersion equation with five polariton-type 

renormalized energy branches. They are represented in six figures. Three of them show the case 

of cavity mode energy 
c

  tuned exactly to the magnetoexciton dipole-active level energy 

4
( , , 0 )

e x
E F B , whereas the other three figure show the polariton pictures where the cavity mode 

energy is tuned exactly to the other dipole-active magnetoexciton level energy 
1

( , , 0 )
e x

E F B . In 

both cases, a multitude of the polariton energy branches has been obtained. 
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