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Abstract 

 

The softening of acoustic phonons above the Peierls structural transition in quasi-one-

dimensional (Q1D) TTF-TCNQ organic crystals is studied. Unlike other papers, a more complete 

physical model is applied to consider simultaneously two the most important electronphonon 

interactions. The first is similar to that of deformation potential, and the second one is of polaron 

type. Analytic expressions for the phonon Green function and for the phonon polarization 

operator are obtained in the random phase approximation. The effects of interchain interaction on 

the phonon dispersion and Peierls critical temperature are analyzed. 

 

 

Introduction 

 

In recent years, investigation of quasi-one-dimensional (Q1D) organic crystals has excited 

special interest. These materials exhibit unusual properties [1–3]. In addition, low dimensionality 

of these structures, which can be considered almost one dimensional, makes 

them an ideal bench for testing theoretical models. Organic nanomaterials have large potential 

applications in electronics, sensing, energy-harnessing, and quantum-scale systems [4]. It has 

been also demonstrated that the highly conducting Q1D organic crystals may have very 

promising thermoelectric applications [5–7]. The most studied Q1D organic crystals are those of 

the tetrathiofulvalinium tetracyanoquinodimethane (TTF-TCNQ) type. However, not all 

parameters of this material are well determined. In this paper, we propose to use the Peierls 

structural transition to provide a more accurate determination of some parameters of this crystal.  

This phenomenon has been theoretically predicted by Rudolf Peierls. According to 

Peierls, at some lowered temperatures, a one-dimensional metallic crystal with a half filled 

conduction band has to pass in a dielectric state with a dimerized crystal lattice. This temperature 

is referred to as the Peierls critical temperature. The Peierls transition has been studied by many 

authors (see [8–12] and references therein).  

Recently, the physical model of Q1D organic crystals has been completed by an 

additional electron-phonon interaction mechanism. It takes into account the fluctuations due to 

acoustic longitudinal phonons of the polarization energy of molecules surrounding the 

conduction electron [13–15]. 

In [16], the Peierls structural transition in Q1D crystals of TTF-TCNQ type was 

investigated in a 1D approximation. Renormalized acoustic phonon frequencies (q) as functions 
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of wave number q were calculated (i) provided that the conduction band is half filled and the 

dimensionless Fermi momentum kF = π/2 and (ii) provided that the concentration of conduction 

electrons is reduced and the band is filled up to a quarter of the Brillouin zone, kF = π/4. The 

Peierls critical temperature was established in both cases. 

A 2D physical model for real TTF-TCNQ crystals was investigated in [17]. The effects of 

interchain interaction on the dispersion of renormalized phonons and on Peierls critical 

temperature were analyzed. The Peierls critical temperature was determined. 

In [18], a 3D physical model of the crystal was studied. The Peierls transition was 

investigated for the case where the dimensionless Fermi momentum is kF = 0.59/2 for different 

values of parameters d1 and d2 which represents the ratio of the transfer energy in the transversal 

y and z directions to the transfer energy along the x direction of conductive chains. In addition, 

the polarization operator as a function of temperature was calculated for different values of 

increase or decrease δ in Fermi momentum kF, which is determined by an increase or decrease in 

the carrier concentration. In this paper, the numerical modellings were performed for the sound 

velocity values at low temperatures taken from [19]: vs1 = 3.4·10
5
 cm/s along chains,  

vs2 = 5.25·10
5
 cm/s in the a direction and vs3 = 5.25·10

5
 cm/s in the c direction. However, more 

exact calculations showed that the sound velocity in the transversal direction cannot be higher the 

sound velocity along the chains.  

The aim of this study is to present a detailed modeling of the Peierls transition in  

TTF-TCNQ crystals in a 3D approximation. The phonon Green function is calculated in the 

random phase approximation. The effects of interchain interaction on the dispersion of 

renormalized phonons and on Peierls critical temperature are analyzed. The results obtained in 

the 3D physical model are commented in detail. 

 

 

1. Physical model in a 3D approximation 

 

The structure and proprieties of TTF-TCNQ crystals are described in many papers (see [1] 

and references therein). A quasi-one-dimensional organic crystal of TTF-TCNQ is composed of 

TCNQ and TTF linear segregated chains. The TCNQ molecules are strong acceptors, and the 

TTF molecules are donors. Because the conductivity of TTF chains is much lower than that of 

TCNQ chains, we can neglect them in the first approximation. Thus, in this approximation, the 

crystal is composed of strictly one-dimensional chains of TCNQ that are packed in a three-

dimensional crystal structure. The crystal lattice constants are a = 12.30 Å, b = 3.82 Å, and  

c = 18.47 Å, where b is in the chain directions. 

The Hamiltonian of the 3D crystal in the tight-binding and nearest neighbor approximations has 

the form  
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In expression (1), ε(k) represents the energy of a conduction electron with 3D quasi-wave vector 

k and projections (kx, ky, kz), ak
+
, ak are the creation and annihilation operators of this electron. 

Carrier energy ε(k) is measured from the conduction band bottom: 

)cos1(2)cos1(2)cos1(2)( 321 ckwakwbkw zyx k ,                                (2)                                         

where w1, w2, and w3 are the transfer energies of a carrier from one molecule to another along the 
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chain, x direction, and in perpendicular—y and z—directions. In (1), bq
+
, bq are the creation and 

annihilation operators of an acoustic phonon with three-dimensional wave vector q and frequency 

ωq. The second term in Eq. (1) is the energy of longitudinal acoustic phonons 
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where ω1, ω2, and ω3 are the limit frequencies in the x, y, and z directions: 
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where vs1,  vs2, and vs3  represent the values of the sound velocity at low temperatures along the 

chains (in b direction) and in perpendicular directions (in a and c directions). 

The third term in Eq. (1) represents the electron–phonon interaction. It contains two 

important mechanisms. The first one is of the deformation potential type; it is determined by the 

fluctuations of energy transfer w1, w2, and w3 due to the intermolecular vibrations (acoustic 

phonons). The coupling constants are proportional to derivatives 1w , 2w , and 3w  of w1, w2, and w3 

with respect to intermolecular distances, 01 w , 02 w , 03 w . The second mechanism is 

similar to that of polaron. This interaction is conditioned by the fluctuations of the polarization 

energy of the molecules surrounding the conduction electron. The coupling constant of this 

interaction is proportional to the average polarizability of the molecule 0 . Because 0  is 

roughly proportional to the volume of molecule, this interaction is important for crystals 

composed of large molecules, such as TCNQ.  

The square module of the matrix element of electronphonon interaction is represented in the 

following form: 
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In Eq. (5), M  is the mass of the molecule, N  is the number of molecules in the basic region of 

the crystal, d1 = w2/ w1 = 
2

w /
1

w , d2 = w3/ w1 = 
3

w /
1

w , parameters γ1, γ2, and γ3 describe the ratio 

of amplitudes of the polaron-type interaction to the deformation potential one in the x, y, and z 

directions: 
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To deduce an expression for a renormalized phonon Green function, we apply a random 

phase approximation. From exact series of the perturbation theory for the phonon Green function, 

we sum up the diagrams containing 0, 1, 2 …∞ closed loops of two electron Green functions that 

make the most important contribution. For the Fourier component of the phonon Green function 

D(q, Ω), we obtain 

 

),(),(),(),(),( 00  qqqqq DDDD                             (7) 
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where ),(  q  is the phonon polarization operator, ),(0 qD  is the free phonon Green function, 

q is the wave vector of longitudinal acoustic phonons, and Ω(q) is the renormalized phonon 

frequency. The real part of the polarization operator is presented in the form:  
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Hereinafter, k and q are dimensionless vectors, N represents the number of elementary cells in 

the basic region of the crystal, N = r N , where r is the number of molecules in the elementary 

cell, r = 2. In (8), A(k,-q) is the matrix element of electronphonon interaction presented in Eq. 

(2), ε(k)  is the carrier energy, ħ is the Planck constant, kn  is the Fermi distribution function. 

Ω(q) is determined by the pole of function ( , )D q  and is obtained from the transcendent 

dispersion equation 
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This equation can be solved only numerically. 

 

 

2. Results and discussion 

 

Numerical modeling was performed for the following parameters of TCNQ chains:  

M = 3.7 · 10
5
 me (me is the electron rest mass), w1= 0.125 eV, 1w  = 0.2 eVÅ

-1
, a = 12.30 Å,  

b = 3.82 Å, and c = 18.47 Å. The sound velocity vs1 = 3.42 · 10
5
 cm/s along chains,  

vs2 = 1.7 · 10
5
 cm/s in the a direction and vs3 = 1 · 10

5
 cm/s in the c direction, d1 = 0.015,  

d2 = 0.013, r = 2 (two molecules in a unit cell), γ1 = 1.37. The γ2 and γ3 parameters are determined 

from the relationships: γ2 = γ12
5
b

5
/(a

5
d1) and γ3 = γ12

5
b

5
/(c

5
d2). The dimensionless Fermi 

momentum is kF = 0.59 π/2.  
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The polarization operator was calculated according to expression (10). 

 

The dependences of renormalized phonon frequencies Ω(qx) on qx at different 

temperatures and different values of qy and qz are shown in Figs. 1–4. The same graphs show the 

same dependences for initial phonon frequency ω(qx).  

 

 

All figures show that the values of Ω(qx) are diminished in comparison with those of 

frequency ω(qx) in the absence of an electron–phonon interaction. This means that the electron–

phonon interaction diminishes the values of lattice elastic constants. In addition, it is evident that, 

with a decrease in temperature T, the curves change their form. In dependences (qx), a 

minimum appears and becomes more pronounced at lower temperatures. It was expected that, at 

a certain temperature, Ω(qx) will attain zero value for qx = 2kF. At this temperature, the structural 

Peierls transition should takes place. However, our calculations show that renormalized phonon 

frequencies Ω(qx) attain zero value for qx = 0.58π. This deviation from qx = 2kF is caused by the 

deviation of kF from π/2. 

Figure 1 shows the phonon spectrum at qy = 0 and qz = 0. In this case, the last two terms in 

(5) become zero. This means that the interaction between TCNQ chains is not taken into account. 

The Peierls structural transition occurs in TCNQ chains alone at T = 59.7 K. The crystal lattice 

along TCNQ chains undergoes changes. A new crystalline state appears with lattice constant 4b, 

which is four times larger. At this temperature, a metal–dielectric phase transition takes place, so 

as a gap in the carrier spectrum is fully open just above the Fermi energy. In addition, it is 

evident that the slope of Ω(qx) at small qx is diminished in comparison with that of ω(qx). This 

means that the elasticity force of interaction between two nearest molecules as a consequence of 

electron–phonon interaction decreases. As a result, the sound velocity along the chains is 

diminished in a large temperature interval.  

Figures 2–4 correspond to qy ≠ 0 and qz ≠ 0. It is observed that, if the interaction between 

TCNQ chains is taken into account (qy ≠ 0, qz ≠ 0), the Peierls critical temperature is diminished. 

Fig.1. Renormalized phonon spectrum Ω(qx) 

for γ1 = 1.37 and different temperatures. The 

dashed line is for the spectrum of free 

phonons. qy = 0 and qz = 0. 
 

Fig.2. Renormalized phonon spectrum 

Ω(qx) for γ1 = 1.37 and different 

temperatures. The dashed line is for the 

spectrum of free phonons. qy = π/4,  

qz = π/4. 

π/4π/4π/4π/4. 
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Figure 2 shows the Ω(qx) dependences for qy = π/4 and qz = π/4 and different temperatures. One 

can observe that Ω(qx) attains zero value at T ~ 59 K; that is, the Peierls transition takes place at 

this T. 

Figure 3 shows the phonon spectrum at qy = 2kF and qz = 2kF. It is evident from the graph that 

the Peierls critical temperature decreases further and has a value of T ~ 56 K. Figure 4 shows the 

dependences of Ω(qx) on qx for qy = π, qz = π and different temperatures. It is observed that the 

transition temperature decreases even more significantly and has a value of T ~ 54 K. Note that 

this value corresponds to the experimental data.   

 

 

 

3. Conclusions 

 

We have studied the effect of the Peierls transition on the phonon spectrum in quasi-one-

dimensional organic crystals of TTF-TCNQ in a 3D approximation. A more complete crystal 

model has been applied to take into account two the most important electron–phonon interactions. 

One of them is of the deformation potential type. The other interaction is similar to that of a 

polaron. The ratio of amplitudes of the second electron–phonon interaction to the first one along 

the chains and in the transversal direction is denoted by γ1, γ2, and γ3, respectively. Analytical 

expressions for the polarization operator and for the renormalized phonon Green function have 

been derived in a random phase approximation. Numerical calculations for renormalized phonon 

spectrum Ω(qx) at different temperatures have been presented. It has been found that, at qy = 0 and 

qz = 0, if the interaction between TCNQ chains is neglected, the Peierls transition begins at  

T ~ 59.7 K (as confirmed experimentally) in TCNQ chains alone and reduces considerably the 

electric conductivity. Due to interchain interaction, the transition is completed at T ~ 54 K. It has 

been shown that the electron–phonon interaction diminishes Ω(qx) and reduces the sound velocity 

in a large temperature interval. The frequency (qx) is about zero for qx = 0.58. The crystal 

Fig.3. Renormalized phonon spectrum 

Ω(qx) for γ1 = 1.37 and different 

temperatures. The dashed line is for the 

spectrum of free phonons. qy = 2kF,  

qz = 2kF. 
 

Fig.4. Renormalized phonon spectrum 

Ω(qx) for γ1 = 1.37 and different 

temperatures. The dashed line is for the 

spectrum of free phonons. qy = π , qz = π. 
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lattice changes from the initial state with lattice constant b to a new crystalline state with constant 

4b. 
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