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Abstract 

 

The dependence of the Peierls structural transition on carrier concentration in quasi-one-

dimensional (Q1D) organic crystals of TTT2I3 is studied in the 3D approximation. A more 

complete physical model that considers simultaneously two most important electronphonon 

interactions is used. The first interaction is similar to that of deformation potential, while the 

second one is of the polaron type. The dynamical interaction of carriers with defects is also taken 

into account. An analytic expression for the phonon Green function is obtained in the random 

phase approximation. A renormalized phonon spectrum is determined for different values of 

dimensionless Fermi momentum kF. In all cases, the Peierls critical temperature is determined.  

 

1. Introduction 

 

Quasi-one-dimensional organic crystals of tetrathiotetracene iodide (TTT2I3) exhibit 

promising thermoelectric properties. These materials were synthesized independently and nearly 

simultaneously [1–4] with the aim to find superconductivity in a low-dimensional conductor. At 

the same time, these crystals show a metal–dielectric transition with decreasing temperature.  

Tetrathiotetracene iodide crystals are composed of segregate chains of TTT and iodine. 

Tetrathiotetracene iodide is a charge-transfer compound. The lattice constants are a = 18.40 Å,  

b = 4.96 Å, and c =18.32 Å, which are indicative of a pronounced crystal quasi-one-

dimensionality. The highly conducting direction is that along b. The compound is of mixed 

valence. Two molecules of TTT give one electron to the iodine chain composed of I3

 ions, 

which play the role of acceptors. However, the crystals admit a nonstoichiometric composition 

with a surplus or deficiency of iodine. Therefore, the metal–dielectric transition takes place at 

different carrier concentrations.  

The Peierls transition was studied by many authors (see [57] and references therein). 

Earlier, it was shown for a TTT2I3.1 crystal that the transition is of Peierls type.  

Previously [8], the Peierls transition in TTT2I3 crystals was analyzed in the 2D 

approximation. It was found that the Peierls transition begins at T ~ 35 K in TTT chains and 

considerably reduces the electrical conductivity. Due to the interchain interaction, the transition is 

completed at T ~ 19 K.  

A 3D physical crystal model was studied in [9]. A TTT2I3.1crystal was analyzed. In this 

case, dimensionless Fermi momentum kF = 0.517/2. The transition begins at T ~ 35 K in TTT 

chains. Due to the interchain interaction, the transition is completed at T ~ 9.8 K. It was observed 
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in experiments that the electrical conductivity has a maximum at 35 K and achieves zero at  

T ~ 10 K. It was shown that the hole–phonon interaction and the interactions with structural 

defects diminish the renormalized phonon spectrum Ω(qx) and reduce the sound velocity in a 

wide temperature range. 

In this paper, we study the behavior of the Peierls transition in TTT2I3 crystals in the 3D 

approximation for different kF values that is determined by variations in the carrier concentration. 

Defect scattering is also considered. Peierls critical temperature Tp is determined for different 

values of dimensionless Fermi momentum kF – δ, where δ is the variation in Fermi momentum kF 

due to a decrease in the carrier concentration. The results obtained in the 3D physical model are 

analyzed and commented in detail. 
 

2. Three-Dimensional Physical Model of the Crystal 

 

The physical model of the crystal was described in more detail in [8]. The Hamiltonian of the 

3D crystal model in the tight binding and nearest neighbor approximations has the form  

 
    



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where the first term is the energy operator of free holes in the periodic field of the lattice. The 

second term is the energy operator of longitudinal acoustic phonons; the third term represents the 

hole–phonon interactions; and ak
+
, ak are the creation and annihilation operators of the hole with 

a 3D quasi-wave vector k and projections (kx, ky, kz). The energy of the hole ε(k), measured from 

the band top is presented in the form 

 

)cos1(2)cos1(2)cos1(2)( 321 ckwakwbkw zyx k                             (2) 

 

where w1, w2 and w3 are the transfer energies of a hole from one molecule to another along the 

chain (x direction) and perpendicular to it (y and z directions). In Eq. (1), bq
+
, bq are the creation 

and annihilation operators of an acoustic phonon with 3D wave vector q and frequency ωq. The 

Peierls transition occurs at low temperatures. In this case, the interaction of electrons with optical 

phonons can be neglected. It was shown in [10] that the spectrum of acoustic phonons of a simple 

one-dimensional chain is described by 
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3

22
2

22
1

2 cqaqbq zyx  q                       (3) 

 

where ω1, ω2, and ω3 are the limit frequencies in the x, y, and z directions. Two most important 

electron–phonon interaction mechanisms are considered: one of the deformation potential type 

and the other of the polaron type. The coupling constants of the first interaction are proportional 

to derivatives 1w , 2w  and 3w  of w1, w2, and w3 with respect to the intermolecular distances. The 

coupling constant of the second interaction is proportional to the average polarizability of the 

molecule 0 . This interaction is important for crystals composed of large molecules, such as TTT, 

so as 0 is roughly proportional to the molecule volume. 
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The square module of matrix element A(k,q) from Eq. (1) can be written in the form 
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Here, M  is the mass of the molecule; N  is the number of molecules in the basic region of the 

crystal; d1 = w2/ w1 = 
2

w /
1

w ; d2 = w3/ w1 = 
3

w /
1

w ; parameters γ1, γ2, and γ3 describe the ratio of 

amplitudes of the polaron-type interaction to the deformation potential one in the x, y, and z 

directions: 
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In the reported results of experimentally measured longitudinal electrical conductivity of TTT2I3 

crystals as a function of temperature, a sharp decrease in electrical conductivity for temperatures 

lower than Tmax = 35 K is observed [2]. Analysis shows that the Hamiltonian from Eq. (1) can not 

explain this behavior of the electrical conductivity. In addition, it is necessary to take into account 

the dynamical interaction of carriers with defects. The static interaction will contribute to the 

renormalization of the hole spectrum. The defects in TTT2I3 crystals are formed due to different 

coefficients of dilatation of the TTT and iodine chains. The Hamiltonian of this interaction Hdef is 

presented in the form 

)()exp()(
1



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Here, )( xqB is the matrix element of a hole interaction with a defect; it is presented as follows: 

)()2/()( xqx qINMqB   ,                                                (7) 

where )( xqI is the Fourier transformation of the derivative with respect to the intermolecular 

distance from the energy of interaction of a carrier with a defect, nx  numbers the defects, which 

are considered linear along the x-direction of the TTT chains and distributed randomly: 

 
2))(sin()( xx bqDqI  ,                                                    (8) 

 

where constant D = 1.03; it determines the intensity of the hole interaction with a defect. 
The renormalized phonon spectrum, Ω(q) is determined by the pole of the Green function and obtained from 

the transcendent dispersion equation 

 
2/1)],(1[)(  qq q                                                (9) 

 

where the principal value of the dimensionless polarization operator takes the form 
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Here, kn is the Fermi distribution function. Equation (9) can be solved only numerically. 
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3. Results and Discussion 

 

Numerical simulations for the 3D physical model of the crystal are performed for the 

following parameters [11]: M = 6.5 × 10
5
 me (me is the mass of the free electron), w1 = 0.16 eV, 

1w= 0.26 eV∙Å
−1

, d1 = 0.015, d2 = 0.015, γ1 = 1.7, γ2 and γ3 are determined from the following 

relationships: 1
55

12 / dab   and 2
55

13 / dcb  . The sound velocity along the TTT chains was 

estimated by comparison of the calculated results for the electrical conductivity of TTT2I3 

crystals with the reported ones [2], 1sv  = 1.5 × 10
5
 cm/s. For 2sv  and 3sv  in transversal directions 

(in the a direction and the c direction), we took 1.35 × 10
5
 cm/s and 1.3 × 10

5
 cm/s, respectively. 

Figures 1–4 show dependences of renormalized phonon frequencies Ω(qx) as  a function 

of qx for different temperatures and different of qy and qz values. The same figures show 

dependences for initial phonon frequency ω(qx). It is evident that the Ω(qx) values are diminished 

compared with those of ω(qx) in the absence of the hole–phonon interaction. This means that the 

hole–phonon interaction and structural defects diminish the values of lattice elastic constants. In 

addition, one can observe that, with a decrease in temperature T, the curves change their form and 

a minimum appears in the Ω(qx) dependences. This minimum becomes more pronounced at lower 

temperatures. 

 

 

Figures 1 and 2 were analyzed in detail in [9]. Figure 1 shows the case where qy = 0 and  

qz = 0 and dimensionless Fermi momentum kF = 0.517π/2. In this case, the interaction between 

the TTT chains is neglected. The Peierls transition begins at T = 35 K. At this temperature, the 

electrical conductivity is significantly diminished, so as a gap in the carrier spectrum is fully 

opened just above the Fermi energy.  In addition, it is evident that the slope of Ω(qx) at low Ω(qx) 

is diminished compared with that of ω(qx). This means that the hole–phonon interaction and 

structural defects have reduced also the sound velocity in a wide temperature range. If the 

interaction between transversal chains is taken into account (qy ≠ 0 and qz ≠ 0), the temperature at 

Ω(qx) = 0 is diminished. This case is shown in Fig. 2 (qy = π and qz = π) and kF = 0.517π/2. It is 

Fig. 1. Renormalized phonon spectrum 

Ω(qx) for γ1 = 1.7 and different 

temperatures. The dashed line is for the 

spectrum of free phonons. kF = 0.517π/2. 
 

Fig. 2. Renormalized phonon spectrum 

Ω(qx) for γ1 = 1.7 and different 

temperatures. The dashed line is for the 

spectrum of free phonons. kF = 0.517π/2. 
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evident from the graph that the transition is completed at T ~ 9.8 K. According to [4], the 

electrical conductivity significantly decreases and achieves zero at T ~ 10 K. Thus, our 

calculations show that the transition is of the Peierls type and completed at this temperature. 

Figure 3 shows the case where the Fermi momentum decreases and has a value of  

kF = (0.517/2) – 0.018. In Fig.3, the case where qy = 0 and qz = 0 is presented. It is evident that 

the Peierls transition begins at T = 57 K.   

Figure 4 shows the case where the interaction between the TTT chains is taken into 

account (qy =  and qz = ) and the Fermi momentum has the same value of  

kF = (0.517/2) –0.018.  It is evident that, at Ω(qx) = 0, the temperature decreases considerably, 

namely, to T = 14 K.  

It was found that, with a decrease in the carrier concentration, Tp increases.  

For kF = 0.517/2, the transition begins at T ~ 35 K and is completed at T ~ 9.8 K. For  

kF = (0.517/2) – 0.018, the transition begins at T ~ 57 K at qy = 0 and qz = 0 and is completed at 

T ~ 14 K at qy =  and qz = . 

 

4. Conclusions 

 

The dependence of the Peierls structural transition on carrier concentration in quasi-one-

dimensional (Q1D) organic crystals of TTT2I3 is studied in the 3D approximation. A more 

complete crystal model is used; it takes into account two most important hole–phonon 

interactions. The interaction of holes with structural defects in the direction of the TTT chains is 

taken into account too. An analytical expression for the polarization operator is derived in the 

random phase approximation. The method of retarded temperature dependent Green function is 

applied. The numerical calculations for renormalized phonon spectrum Ω(qx) for different 

temperatures are presented in two cases: (i) at kF = 0.517/2 and (ii) at a varying carrier 

concentration and kF = 0. 517/2 – δ, where δ is the variation in Fermi momentum kF, which is 

determined by the decrease in the carrier concentration. It is found that, at kF = 0.517/2, the 

Peierls transition begins at T ~ 35 K in the TTT chains and considerably decreases the electrical 

Fig. 3. Renormalized phonon spectrum 

Ω(qx) for γ1 = 1.7 and different 

temperatures. The dashed line is for the 

spectrum of free phonons.  

kF=(0.517 π/2) – 0.018. 

 

Fig. 4. Renormalized phonon spectrum 

Ω(qx) for γ1 = 1.7 and different 

temperatures. The dashed line is for the 

spectrum of free phonons.  

kF=(0.517 π/2) – 0.018. 
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conductivity. Due to the interchain interaction, the transition is completed at T ~ 9.8 K. It is 

shown that the transition is of the Peierls type, so as at T ~ 10 K the electrical conductivity 

achieves zero. The hole–phonon interaction and the interactions with structural defects also 

diminish Ω(qx) and reduce the sound velocity in a wide temperature range. It is observed that, 

with a decrease in carrier concentration, the Peierls critical temperature increases.  
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