In lucrare sunt analizate aspectele de proiectare constructiva ce asigura competitivitatea
tehnologiilor aditive: geometrii complexe si personalizate; complexitatea materialului
(miltimaterialitatea); reproiectarea funcţionala a pieselor, ansamblurilor si produselor; reducerea
numărului de piese într-un asamblu si/sau transformarea ansamblului in piesa; compexitatea
macrostructurii interne; complexitatea ierarhică; complexitatea funcţională hibrida; complexitatea
funcţională prin asamblarea directa la fabricare etc. Se arata ca proiectarea pentru fabricarea aditiva
(Design for Additive Manufacturing - DFMA) ca si proiectarea pentru fabricare (Design for
Manufacturing - DFM) si proiectarea pentru asamblabilitate (Design for Assembly - DFA) este un
process continuu si dinamic si se dezvolta odata cu evoluţia metodelor de prelucrare respective.
Proiectarea pentru fabricarea aditiva are un potenţial foarte mare, deoarece se refera la fabricarea
directa din calculator (Direct Manufacturing) si se poate manifesta atat la structura interna a
componentelor fabricate , cat si la cea interna.
The paper analyzes the aspects of constructive design that ensure the competitiveness of
additive technologies: complex and customized geometries; material complexity (multimateriality); the
funcţional redesign of parts, assemblies and products; reducing the number of parts in an assembly and
/ or transforming the assembly into a part; the complexity of the internai macrostructure; the
hierarchical complexity; the hybrid funcţional complexity; the funcţional complexity by direct
assembly to manufacturing etc. It is shown that Design for Additive Manufacturing (DFMA) as well as
Design for Manufacturing (DFM) and Design for Assembly (DFA) is a continuous and dynamic
process and develops with the evolution the respective Processing methods. Design for Additive
Manufacturing has a great potenţial, because it refers to Direct Manufacturing and can manifest both
the internai structure of the manufactured components and the internai one.