Abstract:
In this work, we demonstrate the sensing properties toward the most common VOCs of columnar Al2O3/ZnO heterolayer-based sensors. We have also developed an approach to tune the sensor selectivity by changing the thickness of the exposed amorphous Al2O3 layer from 5 to 18 nm. Columnar ZnO films are prepared by a chemical solution method, where the exposed surface is decorated with an Al2O3 nanolayer via thermal atomic layer deposition at 75 °C. We have investigated the structure and morphology as well as the vibrational, chemical, electronic, and sensor properties of the Al2O3/ZnO heterostructures. Transmission electron microscopy (TEM) studies show that the upper layers consist of amorphous Al2O3 films. The heterostructures showed selectivity to 2-propanol vapors only within the range of 12–15 nm thicknesses of Al2O3, with the highest response value of ∼2000% reported for a thickness of 15 nm at the optimal working temperature of 350 °C. Density functional theory (DFT) calculations of the Al2O3/ZnO(1010) interface and its interaction with 2-propanol (2-C3H7OH), n-butanol (n-C4H9OH), ethanol (C2H5OH), acetone (CH3COCH3), hydrogen (H2), and ammonia (NH3) show that the molecular affinity for the Al2O3/ZnO(1010) interface decreases from 2-propanol (2-C3H7OH) ≈ n-butanol (n-C4H9OH) > ethanol (C2H5OH) > acetone (CH3COCH3) > hydrogen (H2), which is consistent with our gas response experiments for the VOCs.