DSpace Repository

Qualitative analysis of polynomial differential systems with the line at infinity of maximal multiplicity: exploring linear, quadratic, cubic, quartic, and quintic cases

Show simple item record

dc.contributor.author REPEŞCO, Vadim
dc.date.accessioned 2024-06-14T11:42:51Z
dc.date.available 2024-06-14T11:42:51Z
dc.date.issued 2023
dc.identifier.citation REPEŞCO, Vadim. Qualitative analysis of polynomial differential systems with the line at infinity of maximal multiplicity: exploring linear, quadratic, cubic, quartic, and quintic cases. In: Acta et commentationes (Ştiinţe Exacte și ale Naturii), 2023, nr. 2(16), pp. 111-117. ISSN 2537-6284. en_US
dc.identifier.issn 2537-6284
dc.identifier.uri https://doi.org/10.36120/2587-3644.v16i2.111-117
dc.identifier.uri http://repository.utm.md/handle/5014/27413
dc.description.abstract This article investigates the phase portraits of polynomial differential systems with maximal multiplicity of the line at infinity. The study explores theoretical foundations, including algebraic multiplicity definitions, to establish the groundwork for qualitative analyses of dynamical systems. Spanning polynomial degrees from linear to quintic, the article systematically presents transformations and conditions to achieve maximal multiplicity of the invariant lines at infinity. Noteworthy inclusions of systematic transformations, such as Poincar´e transformations, simplify analysis and enhance the accessibility of phase portraits. en_US
dc.description.abstract Acest articol investighează portretele de faz ale sistemelor diferenţiale polinomiale cu multiplicitatea maximă a liniei de la infinit. Studiul explorează fundamentele teoretice, inclusiv definiţiile multiplicităţii algebrice, pentru a stabili baza pentru analize calitative ale sistemelor dinamice. Acoperind grade polinomiale de la liniar la quintic, articolul prezintă în mod sistematic transformări ş i condiţii pentru a obţine multiplicitatea maximală a dreptei invariante de la infinit. Incluziile notabile ale transformărilor sistematice, cum ar fi transformările Poincare, simplifică analiza şi îmbunătăţesc accesibilitatea portretelor de fază. en_US
dc.language.iso en en_US
dc.publisher Universitatea de Stat din Tiraspol en_US
dc.relation.ispartofseries Acta et commentationes (Ştiinţe Exacte și ale Naturii);2023, nr. 2(16)
dc.rights Attribution-NonCommercial-NoDerivs 3.0 United States *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.subject polynomial differential systems en_US
dc.subject invariant algebraic curve en_US
dc.subject Poincare transformation en_US
dc.subject sisteme diferenţiale en_US
dc.subject curbe algebrice invariante en_US
dc.subject transformarea Poincare en_US
dc.title Qualitative analysis of polynomial differential systems with the line at infinity of maximal multiplicity: exploring linear, quadratic, cubic, quartic, and quintic cases en_US
dc.title.alternative Studiul calitativ al sistemelor diferenţiale polinomiale cu linia de la infinit de multiplicitate maximală: studierea cazurilor liniare, pătratice, cubice, cuartice şi cuintice en_US
dc.type Article en_US


Files in this item

The following license files are associated with this item:

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States

Search DSpace


Advanced Search

Browse

My Account