DSpace Repository

Hybrid stochastic Petri nets with matrix attributes for modeling of discrete-continuous process

Show simple item record

dc.contributor.author GUŢULEAC, Emil
dc.contributor.author ZAPOROJAN, Sergiu
dc.contributor.author GÎRLEANU, Ion
dc.contributor.author CĂRBUNE, Viorel
dc.date.accessioned 2019-02-20T14:17:44Z
dc.date.available 2019-02-20T14:17:44Z
dc.date.issued 2016
dc.identifier.citation GUŢULEAC, Emil, ZAPOROJAN, Sergiu, GÎRLEANU, Ion, CĂRBUNE, Viorel. Hybrid stochastic Petri nets with matrix attributes for modeling of discrete-continuous process. In: Meridian Ingineresc. 2016, nr. 2, pp. 34-40. ISSN 1683-853X. en_US
dc.identifier.issn 1683-853X
dc.identifier.uri http://repository.utm.md/handle/5014/444
dc.description.abstract This paper introduces a new class of hybrid stochastic Petri nets (called HSMN) with marked-controlled matrix attributes which allow high flexibility in describing the discretecontinuous processes dynamics of hybrid systems. The applicability of this approach is illustrated through a few examples of HSMN models with different matrix attributes. An important advantage of the proposed approach is that the graphic representations of these kinds of models are very compact and flexible because their attributes are matrix parameterized. en_US
dc.description.abstract În lucrare este introdusă şi studiată o nouă clasă de reţele Petri stocastice hibride cu atribute matriceale marcajdependente, numite HSMN, care permit de a descrie flexibil dinamica proceselor discret-continue ale sistemelor hibride. Aplicabilitatea acestei abordări este ilustrată prin câteva exemple de modele de HSMN cu diferite atribute matriceale. Un avantaj important al demersului propus constă în faptul că redarea grafică a acestui tip de modele este foarte compactă şi flexibilă, deoarece atributele sale sunt matriceal parametrizate. ro
dc.description.abstract Dans cet article est introduit et étudié une nouvelle classe des réseaux de Petri stochastique hybride (appelés HSMN) avec des marquages-dépendent attributs matriciels, qui permettent de décrire flexiblement la dynamique des processus discrets -continue des systèmes hybrides. L'applicabilité de cette approche est illustrée par quelques exemples de modèles HSMN avec différents attributs matriciels. Un avantage important de l'approche proposée est que les représentations graphiques de ces types de modèles sont très compactes et flexibles parce que ses attributs sont paramétrés par des matrices. fr
dc.description.abstract В работе представлен новый класс гибридных стохастических сетей Петри с маркировочно-контролируемых матрицными атрибутами (ГССПМ), которые позволяют гибко описывать динамику дискретно-непрерывных процессов гибридных систем. Применимость такого подхода иллюстрируется несколькими примерами моделей ГССПМ с различными матрицными атрибутами. Важным преимуществом предлагаемого подхода состоит в том, что графические представления этих видов моделей очень компактны и гибки для исследования. ru
dc.language.iso en en_US
dc.publisher Technical University of Moldova en_US
dc.rights Attribution-NonCommercial-NoDerivs 3.0 United States *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.subject Petri nets en_US
dc.subject reţele Petri en_US
dc.title Hybrid stochastic Petri nets with matrix attributes for modeling of discrete-continuous process en_US
dc.title.alternative Reţele Petri stocastice hibride cu atribute matriceale pentru modelarea proceselor discret-continuie en_US
dc.title.alternative Réseaux de Petri stochastiques hybride avec des attributs matriciels pour la modélisation des processus discret-continu en_US
dc.title.alternative Гибридные стохастические сети Петри с матрицными атрибутами для моделирования дискретно-непрерывных процессов en_US
dc.type Article en_US


Files in this item

The following license files are associated with this item:

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States

Search DSpace


Advanced Search

Browse

My Account