dc.contributor.author | BOGHANASTJUK, Victoria | |
dc.contributor.author | KOBILEATZKY, Nicolae | |
dc.contributor.author | MARIAN, Călin | |
dc.contributor.author | BERDAGA, Olesea | |
dc.contributor.author | TONU, Alexei | |
dc.contributor.author | LARCHENCOV, Alexandru | |
dc.contributor.author | ALEXEIENKO, Eugen | |
dc.contributor.author | ERHAN, Liliana | |
dc.date.accessioned | 2019-10-29T08:54:07Z | |
dc.date.available | 2019-10-29T08:54:07Z | |
dc.date.issued | 2005 | |
dc.identifier.citation | BOGHANASTJUK, Victoria, KOBILEATZKY, Nicolae, MARIAN, Călin et al. Neuron dynamical models and optimal prediction. In: Microelectronics and Computer Science: proc. of the 4th intern. conf., September 15-17, 2005. Chişinău, 2005, vol. 2, pp. 99-102. ISBN 9975-66-038-X. | en_US |
dc.identifier.isbn | 9975-66-038-X | |
dc.identifier.uri | http://repository.utm.md/handle/5014/5542 | |
dc.description.abstract | This paper describes a new approach to informational technological system the mathematical Hopfield model is derived for the dynamic terminal expansion of the content addressable memory in dynamic systems. The model structure has been specifically designed to facilitate control studies. This a real – time temporal supervised learning algorithm leads to a system. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Technical University of Moldova | en_US |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | neuron models | en_US |
dc.subject | additive models | en_US |
dc.subject | Hopfield models | en_US |
dc.subject | prediction | en_US |
dc.subject | networks | en_US |
dc.title | Neuron dynamical models and optimal prediction | en_US |
dc.type | Article | en_US |
The following license files are associated with this item: