IRTUM – Institutional Repository of the Technical University of Moldova

Quartic differential systems with a non-degenerate monodromic critical point and multiple line at infinity

Show simple item record

dc.contributor.author ŞUBĂ, Alexandru
dc.contributor.author VACARAŞ, Olga
dc.date.accessioned 2024-06-17T06:14:29Z
dc.date.available 2024-06-17T06:14:29Z
dc.date.issued 2023
dc.identifier.citation ŞUBĂ, Alexandru, VACARAŞ, Olga. Quartic differential systems with a non-degenerate monodromic critical point and multiple line at infinity. In: Acta et commentationes (Ştiinţe Exacte și ale Naturii), 2023, nr. 2(16), pp. 25-34. ISSN 2537-6284. en_US
dc.identifier.issn 2537-6284
dc.identifier.uri https://doi.org/10.36120/2587-3644.v16i2.25-34
dc.identifier.uri http://repository.utm.md/handle/5014/27427
dc.description.abstract The quartic differential systems with a non-degenerate monodromic critical point and non-degenerate infinity are considered. We showthat in this family the maximal multiplicity of the line at infinity is seven. Modulo the affine transformation and time rescaling the classes of systems with the line of infinity of multiplicity two, three,..., seven are determined. In the cases when the quartic systems have the line at infinity of maximal multiplicity the problem of the center is solved. en_US
dc.description.abstract În această lucrare sunt examinate sistemele diferenţiale cuartice cu un punct critic monodromic nedegenerat şi infinitul nedegenerat. Se arată că ˆın această familie de sisteme multiplicitatea maximală a dreptei de la infinit este egală cu şapte. Cu exactitatea unei transformări afine de coordonate şi rescalarea timpului sunt determinate clasele de sisteme cu dreapta de la infinit de multiplicitatea doi, trei,..., şapte. În cazurile cănd sistemele cuartice au linia de la infinit de multiplicitate maximală problema centrului este rezolvată. en_US
dc.language.iso en en_US
dc.publisher Universitatea de Stat din Tiraspol en_US
dc.relation.ispartofseries Acta et commentationes (Ştiinţe Exacte și ale Naturii);2023, nr. 2(16)
dc.rights Attribution-NonCommercial-NoDerivs 3.0 United States *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.subject quartic differential systems en_US
dc.subject multiple invariant lines en_US
dc.subject monodromic critical points en_US
dc.subject sisteme diferenţiale cuartiec en_US
dc.subject dreaptă invariantă multiplă en_US
dc.subject puncte critice monodromice en_US
dc.title Quartic differential systems with a non-degenerate monodromic critical point and multiple line at infinity en_US
dc.title.alternative Sistemele diferențiale cuartice ce au punct critic monodromic nedegenerat şi linia de la infinit multiplă en_US
dc.type Article en_US


Files in this item

The following license files are associated with this item:

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States

Search DSpace


Browse

My Account